|
|
Effect of Fe-Co-Ni alloy ratios on fluidity of interlaminar vacuum coating |
YI Ya-li, QIN Yue, FENG Kang-kang, SHEN Xiao-long, ZHANG Biao, JIN He-rong |
School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China |
|
|
Abstract Adding metal interlayer between the base layer and the cladding layer of the composite plate can prevent the element diffusion between the interfaces,but the traditional vacuum hot rolling method is difficult to ensure the vacuum degree of the interface of the interlayer and composite plate,oxides and impurities are very easy to appear at the bonding interface. Therefore,using the method of adding molten interlayer,iron cobalt nickel alloy with good fluidity is selected as the interlayer material. From the perspective of improving the fluidity of alloy melt,based on the control law of fluid mechanics and alloy solidification theory,considering the influence of alloy melt shear force and surface pressure on the coating process,a semi quantitative melt interlayer coating mathematical model under the influence of different alloy ratios is established. JMatPro software was used to analyze the influence of the change of mass fraction of iron,cobalt and nickel on the thermophysical parameters of the alloy. With the flow distance as the index,two factor and three level orthogonal tests were carried out under different alloy proportions,and the alloy proportion scheme with higher coating rate was determined by visual analysis. According to the previous research results of the research group,the initial coating temperature is 1 650 ℃,the coating pressure difference is 85 kPa,the suction diameter is 8 mm,and the sandwich width is 16 mm. The vacuum coating test between layers of stainless-steel composite slabs is carried out by relying on the ingot mold rotary vacuum arc melting/suction casting system,and the coating conditions between layers with different alloy ratios are compared. The results show that: the coating rate of Fe-Co-Ni alloy is relatively high when the Fe mass percent is small,and the Ni mass percent is large. The complete coated interlayer has successfully prepared with the Ni80Co15Fe5 alloy. The coating effect and the surface quality of the interlayer are good. Compared with the mathematical model,the test results and the conclusions from the model analysis mutually confirm.
|
Received: 08 October 2022
|
|
|
|
[1] 赵云鹏,余超,肖宏,等. 纯铁中间层对热轧不锈钢复合板性能的影响[J]. 钢铁,2020,55(5):73.(ZHAO Yun-peng,YU Chao,XIAO Hong,et al. Effect of pure iron interlayer on mechanical properties of hot rolled stainless steel clad plate[J]. Iron and Steel,2020,55(5):73.) [2] 郭雄伟,武张静,李宁,等. 钛/钢层合板轧制复合研究进展与展望[J]. 中国冶金,2021,31(3):1.(GUO Xiong-wei,WU Zhang-jing,LI Ning,et al. Research progress and prospects of rolling titanium/steel laminates[J]. China Metallurgy,2021,31(3):1.) [3] Varmazyar J,Khodaei M. Diffusion bonding of aluminum-magnesium using cold rolled copper interlayer[J]. Journal of Alloys and Compounds,2019,773:838. [4] 金贺荣,张一,孔耀颉,等. 一种竖直式复合坯料层间真空涂镍装置及真空涂镍方法:中国,CN201910270411.5[P]. 2019-06-25[2022-10-09]. https://www.cnipa.gov.cn/. (JIN He-rong,ZHANG Yi,KONG Yao-jie,et al. A Vacuum Nickel Coating Device and Vacuum Nickel Coating Method Between Vertical Composite Billet Layers:China,CN2019 10270411.5[P].2019-06-25[2022-10-09]. https://www.cnipa.gov.cn/.) [5] 谢红飙,王德蔚,余超,等. 纯铁做中间材制备不锈钢/碳钢热轧复合板[J]. 钢铁,2017,52(12):48.(XIE Hong-biao,WANG De-wei,YU Chao,et al. Stainless steel/carbon steel composite plate prepared by hot-roll bonding with pure iron as intermediate material[J]. Iron and Steel,2017,52(12):48.) [6] 宜亚丽,孔耀颉,王宇韩,等. 涂覆制坯对不锈钢/低合金钢复合界面影响[J]. 钢铁,2021,56(5):105.(YI Ya-li,KONG Yao-jie,WANG Yu-han,et al. Effect of coating slab preparation on stainless steel/low alloy steel composite interface[J]. Iron and Steel,2021,56(5):105.) [7] JIN He-rong,WEI Rui,WANG Yu-han,et al. Vacuum hot rolling preparation of a stainless-steel clad plate and its numerical simulation[J]. Strength of Materials,2022,54(1):144. [8] 张心金,李龙,刘会云,等. 中间夹层在金属复合板制造过程中的应用[J]. 轧钢,2013,30(6):45.(ZHANG Xin-jin,LI Long,LIU Hui-yun,et al. The application of intermediate interlayer in the manufacturing process of metal clad plate[J]. Steel Rolling,2013,30(6):45.) [9] 刘日平,马明臻,张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报,2021,57(4):515.(LIU Ri-ping,MA Ming-zhen,ZHANG Xin-yu. New development of research on casting of bulk amorphous alloys[J]. Acta Metallurgica Sinica,2021,57(4):515.) [10] 胡礼木,崔令江,李慕勤. 材料成形原理[M]. 北京:机械工业出版社,2005.(HU Li-mu,CUI Ling-jiang,LI Mu-qin. Materials Forming Principle[M]. Beijing:China Machine Press,2005.) [11] 赵九洲,江鸿翔. 偏晶合金凝固过程研究进展[J]. 金属学报,2018,54(5):682.(ZHAO Jiu-zhou,JIANG Hong-xiang. Progress in the solidification of monotectic alloys[J]. Acta Metallurgica Sinica,2018,54(5):682.) [12] 李强,董帮少,崔乃日,等. Fe73.5Si13.5B9Nb3Cu1纳米晶合金的粘度特征[J]. 金属功能材料,2017,24(2):7.(LI Qiang,DONG Bang-shao,CUI Nai-ri,et al. The viscosity characteristic of Fe73.5Si13.5B9Nb3Cu1 nanocrystalline alloy[J]. Metallic Functional Materials,2017,24(2):7.) [13] 刘林,孙德建,黄太文,等. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报,2018,54(5):615.(LIU Lin,SUN De-jian,HUANG Tai-wen,et al. Directional solidification under high thermal gradient and its application in superalloys processing[J]. Acta Metallurgica Sinica,2018,54(5):615.) [14] 王强,董蒙,孙金妹,等. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报,2018,54(5): 742.(WANG Qiang,DONG Meng,SUN Jin-mei,et al. Control of solidification process and fabrication of functional materials with high magnetic fields[J]. Acta Metallurgica Sinica,2018,54(5):742.) [15] 金贺荣,孔耀颉,张一,等. 采用铁钴镍合金夹层的316L/EH40复合板界面特征[J]. 钢铁,2020,55(10):63.(JIN He-rong,KONG Yao-jie,ZHANG Yi,et al. Interfacial structure of 316L/EH40 clad plate with iron-cobalt-nickel alloy as interlayer[J]. Iron and Steel,2020,55(10):63.) [16] 祁明凡,康永林,朱国明,等. 镁合金薄壁件压铸成形的工艺及数值模拟[J]. 中国有色金属学报,2017,27(3):448.(QI Ming-fan,KANG Yong-lin,ZHU Guo-ming,et al. Die casting process and numerical simulation of magnesium alloy thin wall parts[J]. The Chinese Journal of Nonferrous Metals,2017,27(3):448.) [17] 李靖,税烺,周扬,等. 高温合金GH4065A在高压下凝固的组织研究[J]. 钢铁钒钛,2021,42(5):170.(LI Jing,SHUI Lang,ZHOU Yang,et al. Study on the microstructure of superalloy GH4065A solidified under high pressure[J]. Iron Steel Vanadium Titanium,2021,42(5):170.) [18] 黎旺,孙倩,江鸿翔,等. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报,2019,55(7):831.(LI Wang,SUN Qian,JIANG Hong-xiang,et al. Solidification of Al-Si alloy and influence of microalloying element Sn[J]. Acta Metallurgica Sinica,2019,55(7):831.) [19] 宗福春,葛素静,钱伟涛,等. 合金元素和浇注温度对AlSi9Cu3铝合金收缩率和流动性的影响[J]. 热加工工艺,2021,50(15):45.(ZONG Fu-chun,GE Su-jing,QIAN Wei-tao,et al. Effect of alloying elements and casting temperature on shrinkage and fluidity of AlSi9Cu3 aluminum alloy[J]. Hot Working Technology,2021,50(15):45.) [20] Niu G D,Mao J,Jeff W. Effect of Ce addition on fluidity of casting aluminum alloy A356[J]. Metallurgical and Materials Transactions A,2019,50(12):5935. [21] 王忠堂,张玉妥,刘爱国. 材料成型原理[M]. 北京:北京理工大学出版社,2019.(WANG Zhong-tang,ZHANG Yu-tuo,LIU Ai-guo. Materials Forming Principle[M]. Beijing:Beijing Institute of Technology Press,2019.) [22] 孔耀颉. 复合板层间真空涂覆夹层材料配比与制备研究[D]. 秦皇岛:燕山大学,2021. (KONG Yao-jie. Effect of Coating Slab Preparation on Stainless Steel/Low Alloy Steel Composite Interface[D]. Qinhuangdao:Yanshan University,2021.) |
[1] |
HOU Jian, BAI Chenguang, HU Meilong, LIU Xiaoming, HUANG Xiaobo, GUO Lanfen. Optimization on ore-blending of PMC concentrate and two typical limonite ores[J]. Iron and Steel, 2023, 58(6): 45-52. |
[2] |
YANG Shuangping,SUN Haixing,ZHANG Tiantian,LIU Shouman,LIU Haijin. Research on high temperature basic characteristics and optimized ore blending of low silicon ore sintering blending[J]. JOURNAL OF IRON AND STEEL RESEARCH , 2023, 35(6): 659-670. |
[3] |
CAI Kun-kun, ZHANG Zhao-hui, LÜ Ming, LI Dong-lin, XI Xiao-feng, GUO Hong-min. Variation of slag viscous flow characteristics at different blowing stages in converter[J]. Iron and Steel, 2023, 58(4): 69-76. |
[4] |
YU Meng, WANG Chun-hai, ZHANG Xiao-feng, WEN Jie, WANG Yong-qiang, ZHANG Qing-dong. Shape warping behavior of stainless steel/carbon steel clad plate during temper rolling[J]. Iron and Steel, 2022, 57(7): 106-114. |
[5] |
DAI Meng-bo, LUO Bang-cao, SUN Cai-hong, TIAN Hao, SUN Ye-chang, CHUN Tie-jun. Optimized development of steel slag tailings-GGBS based low-cost backfill material[J]. Iron and Steel, 2022, 57(2): 175-184. |
[6] |
XIE Hong-biao, REN Jian-kai, YU Chao, XIAO Hong. Simulation and experiment on periodic interfacial fluctuation in clad plate rolling[J]. Iron and Steel, 2021, 56(5): 65-71. |
|
|
|
|