Corrosion behavior of as-cast Al0.75CoFeCr1.25Ni high entropy alloy in 0.5 mol/L NaOH solution

Si-jia Nie, Xue-ning Yi, Hui-ling Zhou, Hao-jie Zhu, Lan-lan Yang, Fang-lian Fu, Jing-yong Li, Hao-kun Yang, Guo-xiang Xu, Sheng Lu, Yan-xin Qiao

钢铁研究学报(英文版) ›› 2024, Vol. 31 ›› Issue (11) : 2852-2863.

PDF(2827 KB)
欢迎访问《钢铁研究学报(英文版)》官方网站!今天是 2025年7月26日 星期六
PDF(2827 KB)
钢铁研究学报(英文版) ›› 2024, Vol. 31 ›› Issue (11) : 2852-2863. DOI: 10.1007/s42243-024-01180-y

Corrosion behavior of as-cast Al0.75CoFeCr1.25Ni high entropy alloy in 0.5 mol/L NaOH solution

  • Si-jia Nie1, Xue-ning Yi2, Hui-ling Zhou1, Hao-jie Zhu1, Lan-lan Yang1, Fang-lian Fu3, Jing-yong Li1, Hao-kun Yang4, Guo-xiang Xu1, Sheng Lu1, Yan-xin Qiao1
作者信息 +

Corrosion behavior of as-cast Al0.75CoFeCr1.25Ni high entropy alloy in 0.5 mol/L NaOH solution

  • Si-jia Nie1, Xue-ning Yi2, Hui-ling Zhou1, Hao-jie Zhu1, Lan-lan Yang1, Fang-lian Fu3, Jing-yong Li1, Hao-kun Yang4, Guo-xiang Xu1, Sheng Lu1, Yan-xin Qiao1
Author information +
文章历史 +

摘要

The corrosion behavior of an Al0.75CoFeCr1.25Ni high-entropy alloy (HEA) in 0.5 mol/L NaOH solution was investigated using a series of electrochemical and analytical techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, potentiodynamic polarization measurement and electrochemical impedance spectroscopy. The results showed that the Al0.75CoFeCr1.25Ni HEA exhibited a typical columnar dendritic structure, which is composed of face-centered cubic, body-centered cubic (BCC), and ordered BCC phases (B2 phase). The corrosion resistance of this HEA in 0.5 mol/L NaOH solution is comparable to that of 304 SS, attributed to the change in the composition of the passive film formed on the surface. Although the passive film formed was generally rich in Al, the proportion of Cr2O3 inside it increased with the increasing immersion time, enhancing the stability of the passive film and thus improving the corrosion performance of this HEA in 0.5 mol/L NaOH solution.

Abstract

The corrosion behavior of an Al0.75CoFeCr1.25Ni high-entropy alloy (HEA) in 0.5 mol/L NaOH solution was investigated using a series of electrochemical and analytical techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, potentiodynamic polarization measurement and electrochemical impedance spectroscopy. The results showed that the Al0.75CoFeCr1.25Ni HEA exhibited a typical columnar dendritic structure, which is composed of face-centered cubic, body-centered cubic (BCC), and ordered BCC phases (B2 phase). The corrosion resistance of this HEA in 0.5 mol/L NaOH solution is comparable to that of 304 SS, attributed to the change in the composition of the passive film formed on the surface. Although the passive film formed was generally rich in Al, the proportion of Cr2O3 inside it increased with the increasing immersion time, enhancing the stability of the passive film and thus improving the corrosion performance of this HEA in 0.5 mol/L NaOH solution.

关键词

High entropy alloy / Corrosion / Electrochemical behavior / X-ray photoelectron spectroscopy / Passive film

Key words

High entropy alloy / Corrosion / Electrochemical behavior / X-ray photoelectron spectroscopy / Passive film

图表

引用本文

导出引用
Si-jia Nie, Xue-ning Yi, Hui-ling Zhou, . Corrosion behavior of as-cast Al0.75CoFeCr1.25Ni high entropy alloy in 0.5 mol/L NaOH solution[J]. 钢铁研究学报(英文版), 2024, 31(11): 2852-2863 https://doi.org/10.1007/s42243-024-01180-y
Si-jia Nie, Xue-ning Yi, Hui-ling Zhou, et al. Corrosion behavior of as-cast Al0.75CoFeCr1.25Ni high entropy alloy in 0.5 mol/L NaOH solution[J]. Journal of Iron and Steel Research International, 2024, 31(11): 2852-2863 https://doi.org/10.1007/s42243-024-01180-y

参考文献

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
[2] A. Mthisi, N. Malatji, A. Patricia, I. Popoola, L.R. Kanyane, Int. J. Miner. Metall. Mater. 29 (2022) 119-127.
[3] J.J. Yi, F.Y. Cao, M.Q. Xu, L. Yang, L. Wang, L. Zeng, Int. J. Miner. Metall. Mater. 29 (2022) 1231-1236.
[4] M.D. Zhang, L.J. Zhang, P.K. Liaw, G. Li, R.P. Liu, J. Mater. Res. 33 (2018) 3276-3286.
[5] E. Ananiadis, K. Lentzaris, E. Georgatis, C. Mathiou, A. Poulia, A.E. Karantzalis, Met. Mater. Int. 26 (2020) 793-811.
[6] M. Liu, S.D. Zhang, F.J. Li, L.B. Wang, Z.M. Wang, Z.Y. Wang, Y.Y. Sha, Q. Shen, J. Mater. Eng.Perform. 31 (2022) 1444-1455.
[7] W.R. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61 (2018) 2-22.
[8] Q.T. Song, Y.K. Xu, J. Xu, Acta Metall. Sin. 56 (2020) 1507-1520.
[9] M.Y. Wu, K. Chen, Z. Xu, D.Y. Li, Wear 462-463 (2020) 203493.
[10] J. Shittu, M. Sadeghilaridjani, M. Pole, S. Muskeri, J. Ren, Y. Liu, I. Tahoun, H. Arora, W. Chen, N. Dahotre, S. Mukherjee, NPJ Mater. Degrad. 5 (2021) 31.
[11] Y.K. Kim, Y.A. Joo, H.S. Kim, K.A. Lee, Intermetallics 98 (2018) 45-53.
[12] N. Liu, M. Xu, Y.Y. Qian, P.J. Zhou, J. Alloy. Compd. 870 (2021) 159320.
[13] P.C. Cui, Z.J. Bao, Y. Liu, F. Zhou, Z.H. Lai, Y. Zhou, J.C. Zhu, Corros. Sci. 201 (2022) 110276.
[14] Q.J. Dong, W.C. Jia, Z.Q. Zhang, D.X. Zhang, J.S. Wu, B.W. Zhang, Mater. Corros. 73 (2022) 1274-1285.
[15] Y.F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang, Corros. Sci. 52 (2010) 1026-1034.
[16] Q. Wang, A. Amar, C. Jiang, H. Luan, S. Zhao, H. Zhang, G. Le, X. Liu, X. Wang, X. Yang, J. Li, Intermetallics 119 (2020) 106727.
[17] R. Wang, K. Zhang, C. Davies, X.H. Wu, J. Alloy. Compd. 694 (2017) 971-981.
[18] N. Kumar, M. Fusco, M. Komarasamy, R.S. Mishra, M. Bourham, K.L. Murty, J. Nucl. Mater. 495 (2017) 154-163.
[19] Z.J. Shi, Z.B. Wang, X.D. Wang, S. Zhang, Y.G. Zheng, J. Alloy. Compd. 903 (2022) 163886.
[20] R. Sokkalingam, K. Sivaprasad, M. Duraiselvam, V. Muthupandi, K.G. Prashanth, J. Alloy. Compd. 817 (2020) 153163.
[21] Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corros. Sci. 119 (2017) 33-45.
[22] A. Parakh, M. Vaidya, N. Kumar, R. Chetty, B.S. Murty, J. Alloy. Compd. 863 (2021) 158056.
[23] C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, H.F. Zhang, J.Q. Wang, Intermetallics 114 (2019) 106599.
[24] W.R. Wang, W.L. Wang, J.W. Yeh, J. Alloy. Compd. 589 (2014) 143-152.
[25] Y.J. Hsu, W.C. Chiang, J.K. Wu, Mater. Chem. Phys. 92 (2005) 112-117.
[26] W.K. Chai, T. Lu, Y. Pan, Intermetallics 116 (2020) 106654.
[27] Y. Yang, X.Y. Luo, T.X. Ma, L.Y. Wen, L.W. Hu, M.L. Hu, J. Alloy. Compd. 864 (2021) 158717.
[28] K.S. Lee, J.H. Kang, K.R. Lim, Y.S. Na, Mater. Charact. 132 (2017) 162-168.
[29] Y.Z. Shi, L. Collins, N. Balke, P.K. Liaw, B. Yang, Appl. Surf. Sci. 439 (2018) 533-544.
[30] Z.J. Wang, Y.H. Huang, C.T. Liu, J.J. Li, J.C. Wang, Intermetallics 109 (2019) 139-144.
[31] Y.N. Guo, H.J. Su, P.X. Yang, Y. Zhao, Z.L. Shen, Y. Liu, D. Zhao, H. Jiang, J. Zhang, L. Liu, H.Z. Fu, Acta Metall. Sin.(Engl. Lett.) 35 (2022) 1407-1423.
[32] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51.
[33] Y. Guo, L. Liu, W. Zhang, K.D. Yao, Z.F. Zhao, J. Shang, J.G. Qi, M.H. Chen, R.D. Zhao, F.F. Wu, J. Alloy. Compd. 889 (2021) 161676.
[34] Z. Wang, Z.Q. Zhou, L. Zhang, J.Y. Hu, Z.R. Zhang, M.X. Lu, Acta Metall. Sin.(Engl. Lett.) 32 (2019) 585-598.
[35] B.W. Zhang, Q. Zhang, Z. Zhang, K. Xiao, Q. Yao, G.J. Ma, G. Sun, J.S. Wu, Int. J. Miner. Metall. Mater. 29 (2022) 153-160.
[36] Z.Z. Shi, C.H. Li, M. Li, X.M. Li, L.N. Wang, Int. J. Miner. Metall. Mater. 29 (2022) 796-806.
[37] D. Wang, C. Ma, J.Y. Liu, W.D. Li, W. Shang, N. Peng, Y.Q. Wen, Int. J. Miner. Metall. Mater. 30 (2023) 1128-1139.
[38] J.P. Sun, B.Q. Xu, Z.Q. Yang, F.H. Jiang, K.K. Yang, J. Han, G.S. Wu, Corros. Sci. 219 (2023) 111220.
[39] S.Y. Jin, X.C. Ma, R.Z. Wu, T.Q. Li, J.X. Wang, B.L. Krit, L.G. Hou, J.H. Zhang, G.X. Wang, Int. J. Miner. Metall. Mater. 29 (2022) 1453-1463.
[40] X.T. Duan, T.Z. Han, X. Guan, Y.N. Wang, H.H. Su, K.S. Ming, J. Wang, S.J. Zheng, J. Mater. Sci.Technol. 136 (2023) 97-108.
[41] F.Y. Gao, Y.X. Qiao, J. Chen, L.L. Yang, H.L. Zhou, Z.B. Zheng, L.M. Zhang, NPJ Mater. Degrad. 7 (2023) 75.
[42] B.Q. Xu, J.P. Sun, J. Han, Z.Q. Yang, H. Zhou, L.R. Xiao, S.S. Xu, Y. Han, A.B. Ma, G.S. Wu, Corros. Sci. 194 (2022) 109924.
[43] Y.X. Qiao, Z.B. Zheng, H.K. Yang, J. Long, P.X. Han, J. Iron Steel Res.Int. 30 (2023) 1463-1476.
[44] Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, Y.X. Qiao, Corros. Sci. 103 (2016) 50-65.
[45] Y.X. Qiao, Y. Qin, H.L. Zhou, L.L. Yang, X.J. Wang, Z.B. Wang, Z.G. Liu, J.S. Zou, Chinese J. Mech. Eng. 37 (2024) 2.
[46] L. Li, Y.X. Qiao, L.M. Zhang, C.T. Li, Z. Liu, R.Y. Ma, L.L. Yang, J.Y. Li, Y.G. Zheng, Ultrason. Sonochem. 98 (2023) 106498.
[47] F.L. Zheng, H.S. Chen, Y.Q. Zhang, W.X. Wang, H.H. Nie, Int. J. Miner. Metall. Mater. 29 (2022) 1361-1372.
[48] Y.Y. Chen, L.B. Chou, H.C. Shih, Mater. Sci. Eng. A 396 (2005) 129-137.
[49] X.W. Qiu, Results Phys. 12 (2019) 1737-1741.
[50] Y.X. Qiao, W.T. Zhang, N. AlMasoud, X.W. Shen, S.L. Zheng, T.S. Alomar, Z.M.El-Bahy, M.M. Ibrahim, H. Algadi, W. Liu, Adv. Compos. Hybrid Mater. 6 (2023) 204.
[51] T.H. Wang, J. Wang, J.G. Bai, S.J. Wang, C. Chen, P.D. Han, J. Iron Steel Res.Int. 29 (2022) 1012-1025.
[52] Y.B. Tang, X.W. Shen, Z.H. Liu, Y.X. Qiao, L.L. Yang, D.H. Lu, J.S. Zou, J. Xu, Acta Metall. Sin. 58 (2022) 324-333.
[53] P.P. Wang, H.T. Jiang, Y.J. Wang, Y. Zhang, S.W. Tian, Y.F. Zhang, Z.M. Cao, Int. J. Miner. Metall. Mater. 29 (2022) 1559-1569.
[54] Y. Wang, L.H. Zhang, B. Zhang, H.Y. Tian, X. Wei, Z.Y. Cui, J. Electroanal. Chem. 899 (2021) 115693.
[55] Fattah-alhosseini, S. Vafaeian, Appl.Surf. Sci. 360 (2016) 921-928.
[56] Z. Liu, L.M. Zhang, W.Q. Chen, A.L. Ma, Y. Zheng, W. Yan, Y.F. Li, Y.Y. Shan, X.W. Hu, C. Kan, Y.G. Zheng, Corros. Sci. 225 (2023) 111604.
[57] S. Shuang, Z.Y. Ding, D. Chung, S.Q. Shi, Y. Yang, Corros. Sci. 164 (2020) 108315.
[58] M. Zhu, B.Z. Zhao, Y.F. Yuan, S.M. Yin, S.Y. Guo, G.Y. Wei, Mater. Chem. Phys. 279 (2022) 125725.
[59] M.H. Liu, Z.Y. Liu, C.W. Du, X.Q. Zhan, X.J. Yang, X.G. Li, Int. J. Miner. Metall. Mater. 29 (2022) 1186-1196.

PDF(2827 KB)

9

Accesses

0

Citation

Detail

段落导航
相关文章

/