To avoid coarse crystallization of glassy inclusions in Si-Mn deoxidized steel during hot rolling, the effect of MgO on the structure and crystallization behavior of CaO-SiO2-Al2O3 inclusions was investigated. The results showed that the crystallization temperature of the oxide melts decreased with increasing MgO content from 0 to 15.7 wt.%, which suggested that the addition of MgO would increase the temperature range of the crystalline transition. The increase in MgO content could decrease the crystallization activation energy of inclusions. With the increase in MgO content, the relative fractions of Q0Si and Q1Si structure units increased, and those of structure units Q2Si, Q3Si, and Q4Si decreased, increasing the depolymerization degree of the silicate structure. The crystallization ratio of glassy inclusions in the steel crucible increased from 19.7% to 98.3% with increasing MgO content from 0 to 15.7 wt.%. The addition of MgO improved the crystallization ability of inclusions, because MgO provides free oxygen O2- to destroy the bridging oxygens and form nonbridging oxygens O-, which depolymerizes silicate network structure and simplifies the [SiO4]-tetrahedral structure. In addition, MgO would promote the precipitation of the Mg-containing phases with a high melting point. When the MgO content was increased above 12.1 wt.%, MgO·Al2O3 and 2MgO·SiO2 crystalline phases would precipitate from the inclusions.
Abstract
To avoid coarse crystallization of glassy inclusions in Si-Mn deoxidized steel during hot rolling, the effect of MgO on the structure and crystallization behavior of CaO-SiO2-Al2O3 inclusions was investigated. The results showed that the crystallization temperature of the oxide melts decreased with increasing MgO content from 0 to 15.7 wt.%, which suggested that the addition of MgO would increase the temperature range of the crystalline transition. The increase in MgO content could decrease the crystallization activation energy of inclusions. With the increase in MgO content, the relative fractions of Q0Si and Q1Si structure units increased, and those of structure units Q2Si, Q3Si, and Q4Si decreased, increasing the depolymerization degree of the silicate structure. The crystallization ratio of glassy inclusions in the steel crucible increased from 19.7% to 98.3% with increasing MgO content from 0 to 15.7 wt.%. The addition of MgO improved the crystallization ability of inclusions, because MgO provides free oxygen O2- to destroy the bridging oxygens and form nonbridging oxygens O-, which depolymerizes silicate network structure and simplifies the [SiO4]-tetrahedral structure. In addition, MgO would promote the precipitation of the Mg-containing phases with a high melting point. When the MgO content was increased above 12.1 wt.%, MgO·Al2O3 and 2MgO·SiO2 crystalline phases would precipitate from the inclusions.
关键词
Si-Mn deoxidized steel /
Glassy inclusion /
Structure /
Crystallization /
Plasticization
{{custom_keyword}} /
Key words
Si-Mn deoxidized steel /
Glassy inclusion /
Structure /
Crystallization /
Plasticization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] N. Ånmark, A. Karasev, P. Jönsson, Materials 8 (2015) 751-783.
[2] Y. Murakami, Key Eng. Mater.51-52 (1991) 37-42.
[3] K.I. Yamamoto, H. Yamamura, Y. Suwa, ISIJ Int. 51 (2011) 1987-1994.
[4] H.L. Yu, X.H. Liu, H.Y. Bi, L.Q. Chen, J. Mater. Process.Technol. 209 (2009) 455-461.
[5] W. Yang, K. Peng, L. Zhang, Q. Ren, J. Mater. Res.Technol. 9 (2020) 15016-15022.
[6] Y. Ren, W. Yang, L. Zhang, ISIJ Int. 11 (2022) 235-244.
[7] L. Zhang, C. Guo, W. Yang, Y. Ren, H. Ling, Metall. Mater. Trans. B 49 (2018) 803-811.
[8] C. Chen, Z. Jiang, Y. Li, L. Zheng, X. Huang, G. Yang, M. Sun, K. Chen, H. Yang, H. Hu, H. Li, Steel Res. Int. 90 (2019) 1800547.
[9] L. Zhang, Steel Res. Int. 77 (2006) 158-169.
[10] W. Yan, H.C. Xu, W.Q. Chen, Steel Res. Int. 85 (2014) 53-59.
[11] C. Chen, M. Sun, X. Chen, B. Wang, J. Zhou, Z. Jiang, Steel Res. Int. 93 (2022) 2100507.
[12] W. Yang, C. Guo, L. Zhang, H. Ling, C. Li, Metall. Mater. Trans. B 48 (2017) 2717-2730.
[13] S.H. Chen, M. Jiang, X.F. He, X.H. Wang, Int. J. Miner. Metall. Mater. 19 (2012) 490-498.
[14] X.F. He, X.H. Wang, S.H. Chen, M. Jiang, F.X. Huang, W.J. Wang, Ironmak. Steelmak. 41 (2014) 676-684.
[15] K. Kirihara, Kobelco Technology Review 30 (2011) 62-65.
[16] P. Rocabois, J.N. Pontoire, J. Lehmann, H. Gaye, J. Non-Cryst. Solids 282 (2001) 98-109.
[17] M. Faraji, D.P. Wilcox, R.P. Thackray, I. Todd, A.A. Howe, P. Tsakiropoulos, Mater. Sci. Technol. 30 (2014) 1177-1188.
[18] Y. Meng, J. Li, K. Wang, H. Zhu, Metall. Mater. Trans. B 53 (2022) 2647-2656.
[19] K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao, Z. Cao, Metall. Mater. Trans. B 47 (2016) 282-290.
[20] M. Jiang, J.C. Liu, K.L. Li, R.G. Wang, X.H. Wang, Metall. Mater. Trans. B 52 (2021) 1950-1954.
[21] Y. Chen, G.A. Brooks, S.A. Nightingale, Can. Metall. Quart. 44 (2005) 323-330.
[22] H. Suito, R. Inoue, ISIJ Int. 36 (1996) 528-536.
[23] Q. Zeng, J. Li, Q. Xu, W. Yu, Mater. Today Commun. 33 (2022) 104351.
[24] J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai, Y. Kashiwaya, Metall. Mater. Trans. B 6 (2018) 3097-3106.
[25] Q. Zeng, J. Li, Q. Xu, Y. Yu, Heliyon 8 (2022) e11800.
[26] P. Rocabois, J.N. Pontoire, H. Gaye, J. Lehmann, C. Gatellier, Rev. Met. Paris 94 (1997) 1393-1400.
[27] T. Sugimura, S. Kimura, K. Sakamoto, K. Yoshida, I. Takeshi, High cleanliness spring steel and high cleanliness spring excellent in fatigue properties, USA, US009441695B2, 2016.
[28] Z. Li, N. Liu, W. Yang, L. Zhang, J. Non-Cryst. Solids 579 (2022) 121367.
[29] J.Y. Chen, W.L. Wang, L.J. Zhou, Z.H. Pan, J. Iron Steel Res.Int. 28 (2021) 552-562.
[30] W. Li, B.S. Mitchell, J. Non-Cryst. Solids 255 (1999) 199-207.
[31] M. Avrami, J. Chem. Phys. 7 (1939) 1103-1112.
[32] M. Avrami, J. Chem. Phys. 8 (1940) 212-224.
[33] M. Avrami, J. Chem. Phys. 9 (1941) 177-184.
[34] J.A. Augis, J.E. Bennett, J. Therm. Anal. 13 (1978) 283-292.
[35] D. Zheng, J. Zhu, G. Ma, X. Zhang, M. Liu, J. Non-Cryst. Solids 590 (2022) 121693.
[36] P. Zhang, J. Liu, Z. Wang, G. Qian, W. Ma, Metall. Mater. Trans. B 50 (2019) 304-311.
[37] Y. Sun, Z. Zhang, Metall. Mater. Trans. B 46 (2015) 1549-1554.
[38] X. Fan, J. Zhang, K. Jiao, R. Xu, K. Wang, Metall. Res. Technol. 115 (2018) 313.
[39] J. Yang, J. Zhang, O. Ostrovski, C. Zhang, D. Cai, Metall. Mater. Trans. B 50 (2019) 291-303.
[40] Z. Wang, Q. Shu, K. Chou, ISIJ Int. 51 (2011) 1021-1027.
[41] J. Park, G. Kim, J. Kim, S. Park, I. Sohn, Metall. Mater. Trans. B 47 (2016) 2582-2594.
[42] J. Li, Q. Shu, K. Chou, ISIJ Int. 54 (2014) 721-727.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}