Effect of SiO2 mass ratio on high-Ti vanadium titanomagnetite sintering at basicity of 2.0

Peng Hu, Jun-jie Zeng, Yu-xiao Xue, Rui Wang, Yong-da Li, Ning-yu Zhang, Shuo Zhang, Xue-wei Lv

钢铁研究学报(英文版) ›› 2025, Vol. 32 ›› Issue (4) : 849-860.

PDF(2304 KB)
欢迎访问《钢铁研究学报(英文版)》官方网站!今天是 2025年8月1日 星期五
PDF(2304 KB)
钢铁研究学报(英文版) ›› 2025, Vol. 32 ›› Issue (4) : 849-860. DOI: 10.1007/s42243-025-01449-w

Effect of SiO2 mass ratio on high-Ti vanadium titanomagnetite sintering at basicity of 2.0

  • Peng Hu1, Jun-jie Zeng1, Yu-xiao Xue1, Rui Wang1, Yong-da Li1, Ning-yu Zhang1, Shuo Zhang1, Xue-wei Lv1
作者信息 +

Effect of SiO2 mass ratio on high-Ti vanadium titanomagnetite sintering at basicity of 2.0

  • Peng Hu1, Jun-jie Zeng1, Yu-xiao Xue1, Rui Wang1, Yong-da Li1, Ning-yu Zhang1, Shuo Zhang1, Xue-wei Lv1
Author information +
文章历史 +

Abstract

The effect of (CaO+SiO2) mass ratio on high-Ti vanadium titanomagnetite sintering was systematically studied at the fixed basicity (CaO/SiO2) of 2.0. The results show that sinter matrix strength is improved with (CaO + SiO2) mass ratio while the total iron content is reduced. Thermodynamic analysis indicates that the increase in (CaO + SiO2) mass ratio from 15.0 to 22.5 wt.% contributes to the formation of liquid phase, especially silico-ferrite of calcium and aluminum (SFCA). In addition, the formation of perovskite is inhibited and liquid phase fluidity is improved. The porosity of sinter matrix is reduced by 34.5% and SFCA amount is increased by 47.2% when (CaO + SiO2) mass ratio is increased from 15.0 to 18.0 wt.%. With the further increase in (CaO + SiO2) mass ratio, the structure of sinter matrix is too dense and the improved extent of SFCA amount is increasingly low. The appropriate (CaO + SiO2) mass ratio should be 18.0 wt.% overall. Under this condition, sinter matrix strength is greatly improved by over 13.5% compared with the base case and the total iron content can be maintained at about 49 wt.%.

Key words

High-Ti vanadium titanomagnetite / (CaO+SiO2) mass ratio / Sintering process / Liquid phase formation / Consolidation characteristics

图表

引用本文

导出引用
Peng Hu, Jun-jie Zeng, Yu-xiao Xue, . Effect of SiO2 mass ratio on high-Ti vanadium titanomagnetite sintering at basicity of 2.0[J]. 钢铁研究学报(英文版), 2025, 32(4): 849-860 https://doi.org/10.1007/s42243-025-01449-w
Peng Hu, Jun-jie Zeng, Yu-xiao Xue, et al. Effect of SiO2 mass ratio on high-Ti vanadium titanomagnetite sintering at basicity of 2.0[J]. Journal of Iron and Steel Research International, 2025, 32(4): 849-860 https://doi.org/10.1007/s42243-025-01449-w

参考文献

[1] G. Maldybayev, A. Korabayev, R. Sharipov, K.M. Al Azzam, E.S. Negim, O. Baigenzhenov, A. Alimzhanova, M. Panigrahi, R. Shayakhmetova, Heliyon 10 (2024) e24966.
[2] F. Gao, A.U. Olayiwola, B. Liu, S. Wang, H. Du, J. Li, X. Wang, D. Chen, Y. Zhang, Miner. Process. Extr. Metall. Rev. 43(2022) 466-488.
[3] K. Zhou, J. Song, Z. You, H. Xie, X. Lv, ISIJ Int. 60(2020) 1409-1415.
[4] W. Zhao, M. Chu, H. Guo, Z. Liu, B. Yan, P. Li, ISIJ Int. 61(2021) 146-157.
[5] W. Chen, Z. Dong, Y. Jiao, L. Liu, X. Wang, Crystals 11 (2021) 188.
[6] M. Yang, X. Lv, R. Wei, C. Bai, Metall. Mater. Trans. B 49 (2018) 2667-2680.
[7] M. Yang, J. Xiang, C. Bai, X. Zhou, Z. Liu, X. Lv, Metall. Mater. Trans. B 52 (2021) 1436-1449.
[8] S.H. Peng, H. Liu, Z.Z. Sun, C.W. Li, Y.L. Qin, W.Q. Liu, G. Wang, J. Iron Steel Res.Int. 30(2023) 2122-2132.
[9] T. Jiang, Z. Yu, Z. Peng, M. Rao, Y. Zhang, G. Li, ISIJ Int. 55(2015) 1599-1607.
[10] Z. Xing, G. Cheng, H. Yang, X. Xue, Metall. Res. Technol. 120(2023) 606.
[11] S. Yang, W. Tang, X. Xue, Materials 14 (2021) 4376.
[12] A. Dehghan-Manshadi, J. Manuel, S. Hapugoda, N. Ware, ISIJ Int. 54(2014) 2189-2195.
[13] Y. Lu, H. Zhou, F. Yuan, C. Wang, X. Duan, Y. Wang, JOM 75 (2023) 3424-3434.
[14] W.D. Tang, S.T. Yang, L.H. Zhang, Z. Huang, H. Yang, X.X. Xue, J. Cent.South Univ. 26(2019) 132-145.
[15] S. Yang, M. Zhou, T. Jiang, X. Xue, Minerals 11 (2021) 515.
[16] Z. Xing, J. Ma, G. Cheng, H. Yang, X. Xue, J. Sustain. Metall. 8(2022) 1358-1369.
[17] L. Zhang, Z. Gao, S. Yang, W. Tang, X. Xue, Metals 10 (2020) 569.
[18] X. Jiang, J. Zhao, L. Wang, H. An, Q. Gao, H. Zheng, F. Shen, ISIJ Int. 61(2021) 86-92.
[19] S. Machida, K. Nushiro, K. Ichikawa, H. Noda, H. Sakai, ISIJ Int. 45(2005) 513-521.
[20] Z. Pang, Y. Jiang, J. Ling, X. Lü, Z. Yan, Int. J. Miner. Metall. Mater. 29(2022) 1170-1178.
[21] Z. Guo, Y. Zong, J. Zhang, P. Zhao, Z. Xu, Y. Liu, C. Ye, K. Jiao, Fuel 372 (2024) 132179.
[22] S. Wright, L. Zhang, S. Sun, S. Jahanshahi, Metall. Mater. Trans. B 31 (2000) 97-104.
[23] M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, M. Hämä- läinen, ISIJ Int. 47(2007) 38-43.
[24] K.C. Mills, B.J. Keene, Int. Mater. Rev. 32(1987) 1-120.
[25] S. Wu, G. Zhang, S. Chen, B. Su, ISIJ Int. 54(2014) 582-588.
[26] H. Guo, X.M. Guo, Steel Res. Int. 90(2019) 1900138.
[27] X. Lv, C. Bai, Q. Deng, X. Huang, G. Qiu, ISIJ Int. 51(2011) 722-727.
[28] S. Wu, X. Zhai, Metall. Res. Technol. 115(2018) 505.
[29] N.A.S. Webster, M.I. Pownceby, I.C. Madsen, J.A. Kimpton, Metall. Mater. Trans. B 43 (2012) 1344-1357.
[30] L. Niu, Z. Liu, J. Zhang, D. Lan, S. Li, Z. Li, Y. Wang, Int. J. Miner. Metall. Mater. 30(2023) 303-313.

PDF(2304 KB)

Accesses

Citation

Detail

段落导航
相关文章

/