Precipitation of μ Phase in Nickel-based Powder Metallurgy Superalloy FGH97

Li-ming TAN,,Yi-wen ZHANG,,Jian JIA,,Shou-bo HAN,

钢铁研究学报(英文版) ›› 2016, Vol. 23 ›› Issue (8) : 851-856.

PDF(3514 KB)
欢迎访问《钢铁研究学报(英文版)》官方网站!今天是 2025年8月2日 星期六
PDF(3514 KB)
钢铁研究学报(英文版) ›› 2016, Vol. 23 ›› Issue (8) : 851-856.
Material

Precipitation of μ Phase in Nickel-based Powder Metallurgy Superalloy FGH97

  • Li-ming TAN1,2,Yi-wen ZHANG1,2,Jian JIA1,2,Shou-bo HAN1,2
作者信息 +

Precipitation of μ Phase in Nickel-based Powder Metallurgy Superalloy FGH97

  • Li-ming TAN1,2,Yi-wen ZHANG1,2,Jian JIA1,2,Shou-bo HAN1,2
Author information +
文章历史 +

摘要

The precipitation behavior of topological close-packed (TCP) μ phase in powder metallurgy (P/M) nickel-based superalloy FGH97 was investigated. The results showed that proper addition of solution strengthening elements, such as Co, Cr, W, Mo, improved tensile strength, while excessive addition of those elements facilitated the precipitation of μ phase, which seriously aggravated the plasticity of the P/M superalloy. For the heat-treated specimens, the relationship between critical aging time (when μ started to precipitate), aging temperature, and the average electron vacancy number of γ matrix was established.

Abstract

The precipitation behavior of topological close-packed (TCP) μ phase in powder metallurgy (P/M) nickel-based superalloy FGH97 was investigated. The results showed that proper addition of solution strengthening elements, such as Co, Cr, W, Mo, improved tensile strength, while excessive addition of those elements facilitated the precipitation of μ phase, which seriously aggravated the plasticity of the P/M superalloy. For the heat-treated specimens, the relationship between critical aging time (when μ started to precipitate), aging temperature, and the average electron vacancy number of γ matrix was established.

关键词

powder metallurgy superalloy / FGH97 / solution strengthening / μ phase / average electron vacancy number

Key words

powder metallurgy superalloy / FGH97 / solution strengthening / μ phase / average electron vacancy number

图表

引用本文

导出引用
Tan Liming, Zhang Yiwen, Jia Jian, . Precipitation of μ Phase in Nickel-based Powder Metallurgy Superalloy FGH97[J]. 钢铁研究学报(英文版), 2016, 23(8): 851-856
YIWEN -Zhang, JIAN, SHOUBO Precipitation of μ Phase in Nickel-based Powder Metallurgy Superalloy FGH97[J]. Journal of Iron and Steel Research International, 2016, 23(8): 851-856

参考文献

[1] D. Furrer, H. Fecht, JOM 51 (1999) 14–17.
[2] D. J. Novotnak1, G. E. Maurer, L. W. Lherbier, J. F. Radavich, in: Superalloys 2008, TMS, USA, 2008, pp. 339-343.
[3] A. Soula, Y. Renollet, D. Boivin, J. L. Pouchou, D. Locq, P. Caron, Y. Bréchet, in: Superalloys 2008, TMS, USA, 2008, pp. 387-394.
[4] J. Telesman, P. Kantzos, J. Gayda, P.J. Bonacuse, A. Prescenzi, in: Superalloys 2004, TMS, USA, 2004, pp. 215-224.
[5] M. H. Zhao, J. Zhang, D. Feng, Fractographies of High Temperature Alloys, first ed., Metallurgical Industry Press, Beijing, 2006.
[6] C. M. F. Rae, R. C. Reed, Acta Mater. 49 (2001) 4113-4125.
[7] B. Seiser, R. Drautz, D.G. Pettifor, Acta Mater. 59 (2011) 749-763.
[8] M. Simonetti, P. Caron, Mater. Sci. Eng. A 254 (1998) 1-12.
[9] H. M. Tawancy, J. Mater. Sci. 31 (1996) 3929-3936.
[10] K.Y. Cheng, C.Y. Jo, T. Jin, Z. Q. Hu, J. Alloy. Compd. 536 (2012) 7-19.
[11] T. Li, S. G. Tian, D. Xia, M. G. Wang, X. F. Yu, Rare Metal Mater. Eng. 37 (2008) 1924-1929.
[12] T. Cui, Y. S. Zhang, S. W. Guo, L. Wang, H. C. Yang, Acta Metall. Sin. (Engl. Lett.) 17 (2004) 645-650.
[13] Y. W. Zhang, Effect of micro-element hafnium on microstructures and mechanical properties in FGH97 PM superalloy, University of Science & Technology Beijing, Beijing, 2012.
[14] X. Z. Qin, J. T. Guo, C. Yuan, G. X. Yang, L. Z. Zhou, H. Q. Ye, J. Mater. Sci. 44 (2009) 4840-4847.
[15] Y. Q. Li, J. Y. Liu, Precipitate Phase of Superalloys in Grain Boundary, Metallurgy Publishing Company of Technology, Beijing, 1990.
[16] K. Zhao, L. H. Lou, Y. Wen, H. Li, Z. Q. Hu, J. Mater. Sci. 39 (2004) 369-371.
[17] H. ur Rehman, K. Durst, S. Neumeier, A. B. Parsac, A. Kostkac, G. Eggelerc, M. G?kena, Mater. Sci. Eng. A 634 (2015) 202-208.
[18] K. Matuszewski, A. Müller, N. Ritter, R. Rettig, K. J. Kurzydlowski, R. F. Singer, Adv. Eng. Mater. (2015) doi: 10.1002/adem.201500173.
[19] S. G. Tian, B. J. Qian, T. Li, L. L. Yu, J. Xie, M. G. Wang, Rare Metals 30 (2011) 452-456.
[20] Y. W. Zhang, F. M. Wang, B. F. Hu, Rare Metal Mater. Eng. 41 (2012) 989-989.
[21] G. S. Chen, Z. Y. Zhong, J. Iron Steel Res. 2 (1990) 55-62.
[22] L. Pauling, Phys. Rev. 54 (1938) 899-904.

基金

International Science & technology Cooperation Program of China

PDF(3514 KB)

Accesses

Citation

Detail

段落导航
相关文章

/