The precipitation behavior of topological close-packed (TCP) μ phase in powder metallurgy (P/M) nickel-based superalloy FGH97 was investigated. The results showed that proper addition of solution strengthening elements, such as Co, Cr, W, Mo, improved tensile strength, while excessive addition of those elements facilitated the precipitation of μ phase, which seriously aggravated the plasticity of the P/M superalloy. For the heat-treated specimens, the relationship between critical aging time (when μ started to precipitate), aging temperature, and the average electron vacancy number of γ matrix was established.
Abstract
The precipitation behavior of topological close-packed (TCP) μ phase in powder metallurgy (P/M) nickel-based superalloy FGH97 was investigated. The results showed that proper addition of solution strengthening elements, such as Co, Cr, W, Mo, improved tensile strength, while excessive addition of those elements facilitated the precipitation of μ phase, which seriously aggravated the plasticity of the P/M superalloy. For the heat-treated specimens, the relationship between critical aging time (when μ started to precipitate), aging temperature, and the average electron vacancy number of γ matrix was established.
关键词
powder metallurgy superalloy /
FGH97 /
solution strengthening /
μ phase /
average electron vacancy number
{{custom_keyword}} /
Key words
powder metallurgy superalloy /
FGH97 /
solution strengthening /
μ phase /
average electron vacancy number
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] D. Furrer, H. Fecht, JOM 51 (1999) 14–17.
[2] D. J. Novotnak1, G. E. Maurer, L. W. Lherbier, J. F. Radavich, in: Superalloys 2008, TMS, USA, 2008, pp. 339-343.
[3] A. Soula, Y. Renollet, D. Boivin, J. L. Pouchou, D. Locq, P. Caron, Y. Bréchet, in: Superalloys 2008, TMS, USA, 2008, pp. 387-394.
[4] J. Telesman, P. Kantzos, J. Gayda, P.J. Bonacuse, A. Prescenzi, in: Superalloys 2004, TMS, USA, 2004, pp. 215-224.
[5] M. H. Zhao, J. Zhang, D. Feng, Fractographies of High Temperature Alloys, first ed., Metallurgical Industry Press, Beijing, 2006.
[6] C. M. F. Rae, R. C. Reed, Acta Mater. 49 (2001) 4113-4125.
[7] B. Seiser, R. Drautz, D.G. Pettifor, Acta Mater. 59 (2011) 749-763.
[8] M. Simonetti, P. Caron, Mater. Sci. Eng. A 254 (1998) 1-12.
[9] H. M. Tawancy, J. Mater. Sci. 31 (1996) 3929-3936.
[10] K.Y. Cheng, C.Y. Jo, T. Jin, Z. Q. Hu, J. Alloy. Compd. 536 (2012) 7-19.
[11] T. Li, S. G. Tian, D. Xia, M. G. Wang, X. F. Yu, Rare Metal Mater. Eng. 37 (2008) 1924-1929.
[12] T. Cui, Y. S. Zhang, S. W. Guo, L. Wang, H. C. Yang, Acta Metall. Sin. (Engl. Lett.) 17 (2004) 645-650.
[13] Y. W. Zhang, Effect of micro-element hafnium on microstructures and mechanical properties in FGH97 PM superalloy, University of Science & Technology Beijing, Beijing, 2012.
[14] X. Z. Qin, J. T. Guo, C. Yuan, G. X. Yang, L. Z. Zhou, H. Q. Ye, J. Mater. Sci. 44 (2009) 4840-4847.
[15] Y. Q. Li, J. Y. Liu, Precipitate Phase of Superalloys in Grain Boundary, Metallurgy Publishing Company of Technology, Beijing, 1990.
[16] K. Zhao, L. H. Lou, Y. Wen, H. Li, Z. Q. Hu, J. Mater. Sci. 39 (2004) 369-371.
[17] H. ur Rehman, K. Durst, S. Neumeier, A. B. Parsac, A. Kostkac, G. Eggelerc, M. G?kena, Mater. Sci. Eng. A 634 (2015) 202-208.
[18] K. Matuszewski, A. Müller, N. Ritter, R. Rettig, K. J. Kurzydlowski, R. F. Singer, Adv. Eng. Mater. (2015) doi: 10.1002/adem.201500173.
[19] S. G. Tian, B. J. Qian, T. Li, L. L. Yu, J. Xie, M. G. Wang, Rare Metals 30 (2011) 452-456.
[20] Y. W. Zhang, F. M. Wang, B. F. Hu, Rare Metal Mater. Eng. 41 (2012) 989-989.
[21] G. S. Chen, Z. Y. Zhong, J. Iron Steel Res. 2 (1990) 55-62.
[22] L. Pauling, Phys. Rev. 54 (1938) 899-904.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
International Science & technology Cooperation Program of China
{{custom_fund}}