Effect of Si content on impact-abrasive wear resistance of Al2O3p/steel composites prepared by squeeze casting

De-hong Lu . Hai-zhou Li . Bo Ren

钢铁研究学报(英文版) ›› 2018, Vol. 25 ›› Issue (9) : 984-994.

PDF(6766 KB)
欢迎访问《钢铁研究学报(英文版)》官方网站!今天是 2025年8月2日 星期六
PDF(6766 KB)
钢铁研究学报(英文版) ›› 2018, Vol. 25 ›› Issue (9) : 984-994.

Effect of Si content on impact-abrasive wear resistance of Al2O3p/steel composites prepared by squeeze casting

  • De-hong Lu1 . Hai-zhou Li1 . Bo Ren1
作者信息 +

Effect of Si content on impact-abrasive wear resistance of Al2O3p/steel composites prepared by squeeze casting

  • De-hong Lu1 . Hai-zhou Li1 . Bo Ren1
Author information +
文章历史 +

摘要

The 40Cr steel matrix composites were reinforced with Al2O3 particulates (Al2O3p) through Si adding to improve the impact-abrasive wear resistance, in which Si powder ranging up to 25% of the Al2O3p weight was added into the Al2O3p preforms; then, the composites were fabricated by squeeze casting. For all composites, alumina particles are evenly distributed, and Si powder is dissolved in the matrix. Without Si powder addition, the 40Cr steel matrix contains only pearlite; however, ferrite appears and increases with Si powder addition. In the impact-abrasive wear tests, the impact frequency is 80 min–1 and the impacting energy is 2 J. With increasing Si powder, the wear of the composites .rst decreases obviously, reaches the minimum at 10% and then increases. The effect of Si addition on the wear resistance can be attributed to two reasons: one is increasing the hardness of the matrix, and the other is improving the interfacial bonding between Al2O3p and steel. The wear mechanism of the composites is abrasive wear when the Si powder is \10 wt%. Otherwise, it is a mixed mode of abrasive and delamination wear.

Abstract

The 40Cr steel matrix composites were reinforced with Al2O3 particulates (Al2O3p) through Si adding to improve the impact-abrasive wear resistance, in which Si powder ranging up to 25% of the Al2O3p weight was added into the Al2O3p preforms; then, the composites were fabricated by squeeze casting. For all composites, alumina particles are evenly distributed, and Si powder is dissolved in the matrix. Without Si powder addition, the 40Cr steel matrix contains only pearlite; however, ferrite appears and increases with Si powder addition. In the impact-abrasive wear tests, the impact frequency is 80 min–1 and the impacting energy is 2 J. With increasing Si powder, the wear of the composites .rst decreases obviously, reaches the minimum at 10% and then increases. The effect of Si addition on the wear resistance can be attributed to two reasons: one is increasing the hardness of the matrix, and the other is improving the interfacial bonding between Al2O3p and steel. The wear mechanism of the composites is abrasive wear when the Si powder is \10 wt%. Otherwise, it is a mixed mode of abrasive and delamination wear.

关键词

Steel matrix composites / Si / Impact abrasive wear / Wear mechanism

Key words

Steel matrix composites / Si / Impact abrasive wear / Wear mechanism

图表

引用本文

导出引用
De-hong Lu, Haizhou Li, Bo Ren. Effect of Si content on impact-abrasive wear resistance of Al2O3p/steel composites prepared by squeeze casting[J]. 钢铁研究学报(英文版), 2018, 25(9): 984-994
DE-HONG -LU, HAIZHOU -Li, BO -Ren. Effect of Si content on impact-abrasive wear resistance of Al2O3p/steel composites prepared by squeeze casting[J]. Journal of Iron and Steel Research International, 2018, 25(9): 984-994

参考文献

[1] W. Wang, R. Song, S. Peng, Z. Pei, Materials & Design. 105 (2016) 96-105.
[2] S.G. Peng, R.B. Song, T. Sun, F.Q. Yang, P. Deng, C.J. Wu, Wear s 362–363 (2016) 129-134.
[3] C. Wang, X. Li, Y. Chang, S. Han, H. Dong, Wear s 362–363 (2016) 121-128.
[4] A. Lekatou, A.E. Karantzalis, A. Evangelou, V. Gousia, G. Kaptay, Z. Gácsi, P. Baumli, A. Simon, Materials & Design.(1980-2015) 65 (2015) 1121-1135.
[5] K. Ji, Y. Xu, J. Zhang, J. Chen, Z. Dai. Materials & Design 61(9) (2014) 109-116.
[6] M. Lindroos, M. Apostol, V. Heino, K. Valtonen, A. Laukkanen, K. Holmberg, V.T. Kuokkala. Tribology Letters 57(3) (2015) 1-11.
[7] M. Lindroos, V. Ratia, M. Apostol, K. Valtonen, A. Laukkanen, W. Molnar, K. Holmberg, V.T. Kuokkala, Wear 328- 329 (2015) 197-205.
[8] W.M.D. Silva, M.P. Suarez, A.R. Machado, H.L. Costa, Wear 302(1–2) (2013) 1230-1240.
[9] Y. Xing, J. Deng, X. Feng, S. Yu, Materials & Design. 52(24) (2013) 234–245.
[10] R. Yamano?lu, E. Karakulak, A. Zeren, M. Zeren, Materials & Design. 49(3) (2013) 820-825.
[11] S.L. Pramod, A.K.P. Rao, B.S. Murty, S.R. Bakshi, Materials & Design. 78 (2015) 85-94.
[12] M. Bahraini, T. Minghetti, M. Zoellig, J. Schubert, K. Berroth, C. Schelle, T. Graule, J. Kuebler, Composites: Part A 40(10) (2009) 1566-1572.
[13] M. Bahraini a, E. Schlenther b, J. Kriegesmann b, T. Graule a, J. Kuebler, Composites: Part A 41(10) (2010) 1511-1515.
[14] A. Seupel, R. Eckner, A. Burgold, M. Kuna, L. Krüger, Materials Science & Engineering A 662 (2016) 342-355.
[15] D. Wittig, C.G. Aneziris, T. Graule, J. Kuebler, Journal of Materials Science. 44(2) (2009) 572-579.
[16] X.H. Wang, M. Zhang, B.S. Du, Tribology Letters. 41(1) (2011) 171-176.
[17] I.J. Shon, T.W. Kim, J.M. Doh, J.K. Yoon, S.W. Park, I.Y. Ko, Journal of Alloys & Compounds 509(2) (2011) L7–L10.
[18] S. Shamsuddin, S.B. Jamaludin, Z. Hussain, Z.A. Ahmad, Metallurgical and Materials Transactions A 41(13) (2010) 3452-3457.
[19] K. Lemster, T. Graule, T. Minghetti, C. Schelle, J. Kuebler, Materials Science and Engineering: A 420(1) (2006) 296-305.
[20] C. Xuan, H. Shibata, S. Sukenaga, P.G. J?nsson, K. Nakajima, Isij International. 55(9) (2015) 1882-1890.
[21] S. Vasic, B. Grobéty, J. Kuebler, P. Kern, T. Graule, Advanced Engineering Materials. 10(5) (2008) 471–475.
[22] K. Lemster, T. Graule, J. Kuebler, Materials Science and Engineering: A 393(1) (2005) 229-238.
[23] E. Wang, Y. Yi, H. Xie, Y. Fan, Applied Composite Materials. 13(1) (2006) 23-29.
[24] J. Feizabadi, J.V. Khaki, M.H. Sabzevar, M. Sharifitabar, S.A. Sani, Materials & Design. 84 (2015) 325-330.
[25] N. Travitzky, P. Kumar, K. Sandhage, R. Janssen, N. Claussen, Materials Science and Engineering A 344(1) (2003) 245-252.
[26] X.G. He, D.H. Lu, S.M. Chen, Y.C. Xiong, Applied Mechanics & Materials. 328(4) (2013) 901-905.
[27] G.B.V. Kumar, C.S.P. Rao, N. Selvaraj, Journal of Minerals & Materials Characterization & Engineering. 10(1) (2011) 59-91.
[28] M.R. Rosenberger, C.E. Schvezov, E. Forlerer, Wear 259(1) (2005) 590-601.
[29] A. Akdemir, R. Ku?, M. ?im?ir, Materials Science & Engineering A 516(1–2) (2009) 119-125.
[30] G. Miyamoto, J. Oh, K. Hono, T. Furuhara, T. Maki, Acta materialia. 55(15) (2007) 5027-5038.
[31] X. Xu, W. Xu, F.H. Ederveen, S.V.D. Zwaag, Design of low hardness abrasion resistant steels, Wear 301(1–2) (2013) 89-93.
[32] O.P. Modi, D.P. Mondal, B.K. Prasad, M. Singh, H.K. Khaira, Materials Science & Engineering A 343(343) (2003) 235-242.
[33] C. Zhang, H. Zhou, L. Liu, Acta Materialia. 72(7) (2014) 239-251.
[34] Y. Cheng, L. Bian, Y. Wang, F. Taheri, International Journal of Solids & Structures. 51(18) (2014) 3168-3176.
[35] P. Shen, H. Fujii, K. Nogi, Wetting, adhesion and diffusion in Cu–Al/SiO2 system at 1473 K, Scripta Materialia 52(12) (2005) 1259-1263.
[36] T. Laha, S. Kuchibhatla, S. Seal, W. Li, A. Agarwal, Acta Materialia. 55(3) (2007) 1059-1066.
[37] R.E. Neuendorf, E. Saiz, A.P. Tomsia, R.O. Ritchie, Acta Biomaterialia. 4(5) (2008) 1288-1296.
[38] S. Sawla, S. Das, Wear 257(5-6) (2004) 555-561.
[39] C.S. Ramesh, R. Keshavamurthy, B.H. Channabasappa, A. Ahmed, Materials Science & Engineering A 502(1–2) (2009) 99-106.
[40] A.P. Harsha, U.S. Tewari, B. Venkatraman, Wear 254(7-8) (2003) 680-692.
[41] D.K. Dwivedi, Materials & Design. 31(5) (2010) 2517-2531.
[42] D. Lu, Y. Jiang, R. Zhou, Wear 305(1-2) (2013) 286-290.
[43] Z.C. Lu, M.Q. Zeng, J.Q. Xing, M. Zhu, Wear s 364–365 (2016) 122-129.
[44] E. Schlenther, H. ?zcoban, H. Jelitto, M. Faller, G.A. Schneider, T. Graule, C.G. Aneziris, J. Kuebler, Materials Science & Engineering A 590 (2014) 132-139.
[45] E. Schlenther, C.G. Aneziris, T. Graule, J. Kuebler, Materials Science & Engineering A 556 (2012) 751-757.

基金

National Natural Science Foundation of China

PDF(6766 KB)

9

Accesses

0

Citation

Detail

段落导航
相关文章

/