为了实现低硫洁净钢种(w([S])≤0.006%)的稳定生产,通过对渣钢间脱硫反应热力学计算,在结合某厂生产实践的基础上,分析了该厂120 t转炉冶炼低硫洁净钢种时相关增硫因素,提出减少KR脱硫渣、废钢和造渣料等入炉原辅料硫质量分数和优化转炉冶炼工艺参数等控制措施,为转炉冶炼低硫钢水和加强终点硫控制提供参考借鉴。结果表明,控制入炉原辅料钢水增硫质量分数Δw([S])≤0.008 22%,转炉终点温度为1 640~1 680 ℃、炉渣碱度为3.0~4.0、渣中w((FeO))为10%~18%、渣钢硫分配比LS为5.11~8.16、转炉终点硫质量分数合格率由80%提升至98%。
Abstract
In order to achieve the stable production of low-sulfur clean steel (w([S])≤0.006%), the thermodynamics of the desulfurization reaction between the slag and steel are calculated,based on the production practice of a certain plant,the relevant sulfur increase factors when making low-sulfur clean steeln 120 t converter of the plant are analyzed.Control measures such as reducing the sulfur content of raw and auxiliary materials and reducing KR desulfurization slag,scrap and slagging materials and optimizing converter smelting process parameters are proposed.It provides a reference for converter smelting low-sulfur molten steel and strengthening end-point sulfur control.The results show that the sulfur-increasing content of raw and auxiliary materials in the furnace less than 0.008 2%,the converter end temperature between 1 640-1 680 ℃,the slag basicity between 3.0-4.0,and the w((FeO)) in the slag between 10%-18%,the slag steel sulfur distribution ratio LS between 5.11-8.16,and the final sulfur content pass rate of the converter is increased from 80% to 98%.
关键词
转炉 /
低硫钢 /
增硫 /
热力学 /
脱硫 /
控制
{{custom_keyword}} /
Key words
converter /
low sulfur content steel /
resulfurization /
thermodynamics /
desulfurization /
control
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周俐,刘国平,丁长江,等.120 t转炉熔池中硫行为的研究[J].钢铁,2007,42(10):29.
[2] 张利江.降低炼钢-连铸工序钢铁料消耗生产实践[J].河北冶金,2021(10):72.
[3] 龙鹄, 成国光, 丘文生, 等. 轴承钢中大尺寸夹杂物的特征、来源及改进工艺[J].中国冶金, 2020, 30(9): 53
[4] CHEN Shu-hao,WANG Xin-hua,HE Xiao-fei,et al.Industrial application of desulfurization using low basicity refining slag in tire cord steel[J].Journal of Iron and Steel Research International,2013,20(1):26.
[5] 张强,袁宏伟,杨森祥,等.攀钢低硫管线钢硫含量控制生产实践[J].钢铁,2013,48(11):32.
[6] Schrama F N H,Beunder E M,Van den Berg B, et al.Sulphur removal in ironmaking and oxygen steelmaking[J].Ironmaking and Steelmaking,2017,44(5):333.
[7] HE Sheng-ping,ZHANG Guo-xing,WANG Qian.Desulphurisation process in RH degasser for soft-killed ultra-low-carbon electrical steels[J].ISIJ International,2012,52(6):977.
[8] 徐匡迪,肖丽俊,干勇,等.新一代洁净钢生产流程的理论解析[J].金属学报,2012,48(1):1.
[9] 郑福生,付强,何新,等.17CrNiMo6高纯净钢锭生产工艺优化[J].河北冶金,2021 (2):61.
[10] 杨春政.高效低成本洁净钢生产实践探索[J].钢铁,2021,56(8):20.
[11] 孙萌, 姜周华, 李阳, 等. Ce-Mg复合处理对含硫齿轮钢SCr420H洁净度的影响[J].钢铁, 2021, 56(7): 47.
[12] 孙亮,朱良,赵晓东.3种铁水脱硫工艺的应用实践[J].中国冶金,2018,28(3):50.
[13] 赵迪,石教兴,李红洋,等.提高转炉上连铸Q345B探伤质量的措施[J].连铸,2020(4):34.
[14] 郝鑫,白雪莹,安海玉,等.高品质中厚板低硫冶炼工艺优化[J].河北冶金,2019 (3):39.
[15] 赵家七,蔡小锋,邹长东.180 t RH真空精炼炉脱硫工艺开发及应用[J].钢铁,2018,53(11):41.
[16] Kharlashin P S,Kolomiytseva Y S,Grigoryeva M A,et al.Kinetics of desulfurization and resulfurization when low-sulfur steel making at the stage of oxidizing refining[J].Metallurgical and Mining Industry,2010,2(4):267.
[17] 吴发达,包燕平,刘建华.转炉治炼低硫钢回硫的控制[J].炼钢,2007,23(3):21.
[18] 徐匡迪,蒋国昌,洪新,等.从废钢冶炼纯净钢新流程的讨论[J].金属学报,2001,37(1):395.
[19] 孟兆利.活性石灰硫含量及对炼钢的影响分析[J].耐火与石灰,2012,37(6):13.
[20] 邓南阳,王建军,吴坚,等.顶底复吹转炉冶炼45#硬线钢终点硫的控制[J].安徽工业大学学报(自然科学版),2018,35(2):99.
[21] 杨文远,郑从杰,崔健,等.大型转炉吹炼过程中熔池温度的变化状况[J].钢铁研究学报,2003,15(4):5.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}