厚规格板坯扇形段热装预处理工艺开发

李新, 刘洋, 朱志远, 王国连, 胡显堂, 谢翠红

连铸 ›› 2024, Vol. 43 ›› Issue (4) : 91-95.

PDF(7496 KB)
欢迎访问《连铸》官方网站!今天是 2025年7月26日 星期六
PDF(7496 KB)
连铸 ›› 2024, Vol. 43 ›› Issue (4) : 91-95. DOI: 10.13228/j.boyuan.issn1005-4006.20240028
技术交流

厚规格板坯扇形段热装预处理工艺开发

  • 李新1,2,3, 刘洋1,2,3, 朱志远4, 王国连5, 胡显堂5, 谢翠红5
作者信息 +

Development of segment hot charging pretreatment process of thick slab

  • 李新1,2,3, 刘洋1,2,3, 朱志远4, 王国连5, 胡显堂5, 谢翠红5
Author information +
文章历史 +

摘要

热送热装技术可以显著降低加热炉能源消耗、提高生产效率、减少钢-轧界面的碳排放。然而,热送热装的微合金钢板坯在轧制后极易产生红送裂纹,限制了该技术的应用。为了研究300 mm厚微合金钢板坯的扇形段热装预处理工艺,采用高温拉伸试验研究了热装预处理过程的合理冷却速度,通过工业试验研究了热装预处理过程板坯表面温度和微观组织的变化规律,利用统计的方法研究了热装预处理后钢板的表面质量和力学性能。结果表明,热装预处理过程合理的冷却速度应在4.0 ℃/s以上。在扇形段热装预处理过程板坯表面温度由920 ℃降至387 ℃,冷却速度约4.2 ℃/s,表面回温可达742 ℃,回温速度约1.2 ℃/s;通过快冷和回温使得板坯表面形成了细小的贝氏体组织。热装预处理工艺实施后,热装温度由500~550 ℃提高至600~650 ℃,消除了高温热送热装带来的红送裂纹问题,钢板力学性能稳定。

Abstract

Hot delivery and hot charging technology can significantly reduce energy consumption of heating furnaces, improve production efficiency, and reduce carbon emissions during steelmaking and rolling process. However, hot delivery cracks are easily existed on the plate surface after high temperature hot delivery of microalloyed steel slabs, which limits the application of this technology. In this work, the high temperature tensile test experiment was carried out to investigate the reasonable cooling rate during the hot charging pretreatment process of 300 mm slab. The variation process of surface temperature and microstructure of slab during the hot charging pretreatment process was studied through industrial experiments. The surface quality and mechanical properties of steel plates with hot charging pretreatment process were studied using statistical methods. The results indicate that the surface temperature of 300 mm thick slab is deceased from 920 ℃ to 387 ℃, and the cooling rate is about 4.2 ℃/s during the segment hot charging pretreatment process. The surface temperature is return to 742 ℃, and the heating rate is about 1.2 ℃/s. Fine bainite structures are formed through rapid cooling and reheating on the surface of the slab. After the implementation of the hot charging pre-treatment process, the hot charging temperature of the slab is increased from 500-550 ℃ to 600-650 ℃, and the hot delivery cracks are eliminated, and the mechanical properties of the steel plate are stable.

关键词

热装热送 / 红送裂纹 / 热装预处理 / 连铸 / 厚规格板坯

Key words

hot charging and delivery / hot delivery cracks / hot charging pretreatment / continuous casting / thick slab

图表

引用本文

导出引用
李新, 刘洋, 朱志远, . 厚规格板坯扇形段热装预处理工艺开发[J]. 连铸, 2024, 43(4): 91-95 https://doi.org/10.13228/j.boyuan.issn1005-4006.20240028
LI Xin, LIU Yang, ZHU Zhiyuan, et al. Development of segment hot charging pretreatment process of thick slab[J]. Continuous Casting, 2024, 43(4): 91-95 https://doi.org/10.13228/j.boyuan.issn1005-4006.20240028

参考文献

[1] 殷瑞钰,张福明,张寿荣,等. 钢铁冶金工程知识研究与展望[J]. 工程研究-跨学科视野中的工程, 2019, 11(5): 438.
[2] 柴立元,王云燕,孙竹梅,等. 绿色冶金创新发展战略研究[J]. 中国工程科学, 2022, 24(2): 10.
[3] 蒋扬虎,肖坤伟.连铸坯热送热装工艺热技术概述[J].武钢技术,1998, 36(7):21.
[4] 于洋,王畅,王林,等.有限元模拟在板坯直装及热装中的应用[J].中国冶金,2014, 24(1):41.
[5] 张树堂. 连铸坯热送热装系统优化技术[J]. 连铸, 1999(1): 12.
[6] 邢跃. 宝钢连铸坯热送热装技术的经济效益分析与评价[J]. 上海节能, 1996(10): 15.
[7] 孙本荣. 国内外热送热装和直接轧制技术的进展[J]. 轧钢, 1992(2): 41.
[8] 刘志明,张炯明,罗衍昭. 热装热轧微合金钢板表面裂纹分析[J]. 钢铁, 2012, 47(2): 67.
[9] 刘勇,刘富贵,付芹,等. 提高连铸坯热送热装率技术研究及应用[J]. 金属材料与冶金工程, 2021, 49(6): 38.
[10] 胡波,高丹,樊智,等. 线棒材连铸坯热送热装的工艺技术研究[J]. 新型工业化, 2021, 11(9): 46
[11] 郑万,寇锦荣,李烈军,等. 微钛固氮降低含铌钢皮下裂纹敏感性的机理[J]. 钢铁, 2022, 57(8): 94.
[12] MAEHARA Y, NAKAI K, YASUMOTO K, et al. Hot cracking of low alloy steels in simulated continuous casting-direct rolling process[J]. Tetsu-to-Hagané, 1987, 73(7): 876.
[13] KAMADA Y, HASHIMOTO T, WATANABE S. Effect of hot charge rolling condition on mechanical properties of Nb bearing steel plate[J]. ISIJ International, 1990, 30(3): 241.
[14] KATO T, ITO Y, KAWAMOTO M, et al. Prevention of slab surface transverse cracking by microstructure control[J]. ISIJ International, 2003, 43(11): 1742.
[15] 高新军,王三忠,王洪顺. 板坯的热脆性与淬火处理[J]. 连铸, 2005(6): 28.
[16] 王朝辉. 冷镦钢SWRCH22A大方坯热送过程表面淬火工艺研究[D]. 沈阳:东北大学, 2015.
[17] 张开发. 连铸板坯热送热装工艺技术研究[D]. 北京:钢铁研究总院, 2021.
[18] 张开发,王明林,张慧,等. 热送热装工艺的数值模拟[J]. 连铸, 2021(1): 26.
[19] 钱志友,周佳琪. 南钢第一炼钢厂铸坯三次冷却技术开发[J]. 连铸, 2020(5): 26.
[20] 李永超,李宝秀,郭明仪. 铸坯表面淬火技术的发展与应用[J]. 河北冶金, 2016(3): 44.
[21] 鲁永剑. 低合金钢中厚板连铸坯热送裂纹形成及预防机理研究[D]. 重庆:重庆大学,2013.
[22] 刘洋,朱国森,朱志远,等. 基于铸机扇形段的连铸板坯热装预处理工艺设备开发[J]. 连铸, 2022(6): 68.
[23] 李万国,王庆,张红令,等. 连铸后工序铸坯温度与冷却控制[J]. 连铸, 2016(6): 31.
[24] 詹欣林,成国光,申文君,等. SCM420连铸坯热送过程MnS-AlN复合相的析出行为[J]. 中国冶金, 2022, 32(3): 34.
[25] 万潇,刘洋,齐岩,等. 400 mm厚铸坯热装技术研究[J]. 轧钢, 2023, 40(4): 103.
[26] 曾春水,高捷,陶艳火,等. 优化钢坯热送热装温度工艺的实践[C]//2012年全国炼钢—连铸生产技术会论文集(下).重庆:中国金属学会, 2012:149.

PDF(7496 KB)

49

Accesses

0

Citation

Detail

段落导航
相关文章

/