高拉速连铸生产是连铸高效、绿色、智能化发展的成果和实现途径。以实现高拉速连铸为目标,从工艺控制和装备设计角度对结晶器开展研究,建立结晶器传热模型,在对结晶器传热分析的基础上,提出了高拉速结晶器优化设计的核心是在提高冷却效率前提下,提高铜板冷却均匀性的优化思路。采用多目标策略优化的方法,提出了一种结晶器水缝优化设计的新方案。优化后的结晶器铜板热面温度和温差显著降低,从而可显著降低高拉速下由坯壳冷却不均造成的漏钢风险。这对于连铸机高拉速生产技术的推广和应用具有重要意义。
Abstract
The production of high-speed continuous casting is the achievement and realization ways of the high efficiency, green and intelligent development of continuous casting. Aiming at realizing high-speed continuous casting, the mold is studied on the process control and equipment design, and the mold model is established. Based on the heat transfer analysis of mold, it is proposed that the key to optimize high-speed mold is to improve the homogeneity of Cu plate with the premise of increasing the cooling efficiency. By the multi-objective optimization, a new method to optimize the water seam of mold is proposed. After optimization, the hot surface temperature and the temperature difference of Cu plate of the mold are reduced significantly, which can obviously reduce the risk of breakout caused by the uneven cooling of the slab at high speed casting. This is of great significance for the promotion and application of high speed production technology of caster.
关键词
连铸 /
结晶器 /
高拉速 /
传热
{{custom_keyword}} /
Key words
continuous casting /
mold /
high casting speed /
heat transfer
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 2023年全球粗钢、生铁、直接还原铁产量汇总与分析[N].世界金属导报,2024-02-07(1).
[2] 朱苗勇. 新一代高效连铸技术发展思考[J]. 钢铁, 2019, 54(8): 21.
[3] 刘珂, 季晨曦, 王胜东, 等. MCCR产线110 mm薄板坯结晶器流场的数值模拟[J]. 钢铁研究学报, 2021, 33(2): 143.
[4] 姚同路,吴伟,杨勇,等. “双碳”目标下中国钢铁工业的低碳发展分析[J].钢铁研究学报,2022,34(6):505.
[5] 朱斌译. 拉速达3 m/min的日本钢管公司福山厂板坯连铸机[J]. 重钢技术, 1990, 32(4): 86.
[6] 钟静译. 日本钢管公司福山5号板坯连铸机以3 mmin的高速浇铸[J]. 国外钢铁, 1989(1): 23.
[7] SUZUKI M, SUZUKI M, NAKADA M. Perspectives of research on high-speed conventional slab continuous casting of carbon steels[J]. ISIJ International, 2001, 41(7): 670.
[8] ITO Y, MURAI T, MIKI Y, et al. Development of hard secondary cooling by high-pressure water spray in continuous casting[J]. ISIJ International, 2011, 51(9): 1454.
[9] 邓小旋,潘宏伟,季晨曦,等. 常规低碳钢板坯的高拉速连铸工艺技术[J]. 钢铁, 2019, 54(8): 70.
[10] LI L P, WANG X H, DENG X X, et al. Application of high speed continuous casting on low carbon conventional slab in SGJT[J]. Steel Research International, 2014, 85(11): 1490.
[11] 姚成功,田松林,王文学.高拉速板坯结晶器设计分析[J].连铸,2018(1):22.
[12] 聂荣恩, 么旭林, 崔猛. 矩形坯高拉速连铸结晶器开发与应用[J]. 炼钢, 2023, 39(5): 48.
[13] 马硕,衍昭,张聪聪,等. 薄板坯连铸结晶器铜板厚度对传热行为影响[J].连铸,2023(3):42.
[14] 蔡兆镇, 朱苗勇. 板坯连铸结晶器内钢凝固过程热行为研究Ⅰ.数学模型[J]. 金属学报, 2011, 47(6): 671.
[15] 蔡兆镇, 朱苗勇. 板坯连铸结晶器内钢凝固过程热行为研究Ⅱ.模型验证与结果分析[J]. 金属学报, 2011, 47(6): 678.
[16] THOMAS B G. Review on modeling and simulation of continuous casting[J]. Steel Research International, 2018, 89(1): 1700312.
[17] 季策, 黄华贵, 孙静娜, 等. 层状金属复合板带铸轧复合技术研究进展[J]. 中国机械工程, 2019, 30(15): 1873.
[18] 朱苗勇. 高拉速连铸过程传输行为特征及关键技术探析[J]. 钢铁, 2021, 56(7): 1.
[19] 杨昌霖,高琦,姚成功,等.板坯连铸结晶器铜板水槽的优化设计[J]. 中国冶金, 2021, 31(3): 101.
[20] 王志成,王卫领,罗森,等.新型连铸结晶器冷却结构的铜板热-力学行为[J].中国有色金属学报,2014,24(1):115.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
宝钢金苹果计划资助项目(A19ECEM207)
{{custom_fund}}