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基于工业大数据的智能化高炉炼铁技术研究进展
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(东北大学冶金学院,
 

辽宁
 

沈阳
 

110819)
 

摘 要:高炉冶炼过程是最典型的“黑箱”过程,其复杂性和不确定性为高炉稳定顺行带来了巨大挑战。但高炉炼

铁拥有丰富的数据资源,数据科学、智能技术的快速发展,为解决高炉炼铁过程中不确定性问题提供了有效手段。

围绕大数据技术在高炉炼铁中的应用,从高炉数据预处理、高炉关键指标预测、高炉炉况评价和高炉指标优化4
个方面对现阶段智能化高炉炼铁技术进行总结与分析。在高炉数据预处理方面,应综合考虑数据问题和算法特

性,科学选择数据处理方法,才能使高炉数据质量得到有效改善。在高炉关键指标预测方面,需要先消除高炉参

数间时滞性的影响,并筛选出有效的输入特征,才能保证预测模型的准确率。在高炉炉况评价方面,需要构建数

据信息与工艺机制融合的高炉智慧模型,才能够实现高炉炉况的科学评价。在高炉参数优化控制方面,应该以低

风险、低经济、高回报作为优化目标,在追求优化效果的同时还应综合考虑现场操作的可行度和操作成本。要实

现高炉智能化生产,还需要研究者们继续探索和完善。
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Abstract:
 

Blast
 

furnace
 

ironmaking
 

was
 

the
 

most
 

typical
 

"black
 

box"
 

process,
 

its
 

complexity
 

and
 

uncertainty
 

would
 

bring
 

the
 

great
 

challenges.
 

However,
 

blast
 

furnace
 

ironmaking
 

is
 

rich
 

in
 

data
 

resources,
 

and
 

the
 

rapid
 

development
 

of
 

data
 

science
 

and
 

intelligent
 

technologies
 

provides
 

an
 

effective
 

means
 

to
 

address
 

the
 

uncertainty
 

in
 

the
 

blast
 

furnace
 

ironmaking
 

process.
 

This
 

work
 

focused
 

on
 

the
 

application
 

of
 

artificial
 

intelligence
 

technology
 

in
 

blast
 

furnace
 

ironmaking.
 

And
 

the
 

current
 

intelligent
 

blast
 

furnace
 

ironmaking
 

technology
 

from
 

four
 

aspects
 

were
 

summarized
 

and
 

analyzed,
 

including
 

the
 

data
 

governance,
 

the
 

key
 

indicator
 

forecast,
 

furnace
 

status
 

evaluation
 

and
 

parameter
 

optimization
 

of
 

blast
 

furnace.
 

In
 

order
 

to
 

effectively
 

improve
 

the
 

quality
 

of
 

blast
 

furnace
 

data,
 

data
 

problems
 

and
 

algorithmic
 

characteristics
 

should
 

be
 

fully
 

considered
 

in
 

the
 

scientific
 

selection
 

of
 

data
 

processing
 

methods.
 

In
 

the
 

prediction
 

of
 

blast
 

furnace
 

key
 

indicators,
 

the
 

effect
 

of
 

time
 

delay
 

among
 

blast
 

furnace
 

parameters
 

should
 

be
 

eliminated
 

and
 

effective
 

input
 

features
 

should
 

be
 

screened
 

out
 

to
 

improve
 

the
 

accuracy
 

of
 

the
 

prediction
 

model.
 

In
 

the
 

evaluation
 

of
 

blast
 

furnace
 

status,
 

data
 

information
 

and
 

process
 

theory
 

are
 

deeply
 

integrated
 

to
 

achieve
 

scientific
 

evaluation
 

of
 

blast
 

furnace
 

condition.
 

In
 

the
 

aspect
 

of
 

blast
 

furnace
 

parameter
 

optimization,
 

low
 

risk,
 

low
 

economy
 

and
 

high
 

return
 

should
 

be
 

taken
 

as
 

the
 

optimization
 

objectives,
 

and
 

the
 

feasibility
 

of
 

field
 

operation
 

and
 

operation
 

cost
 

should
 

be
 

considered
 

comprehensively
 

while
 

pursuing
 

the
 

optimization
 

effect.
 

To
 

achieve
 

intelligent
 

blast
 

furnace
 

production,
 

a
 

lot
 

of
 

research
 

work
 

need
 

to
 

be
 

explored
 

and
 

perfected
 

by
 

scholars.
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  钢铁工业是典型的资源能源密集型流程工业, 是国民经济支柱产业。高炉炼铁作为主流钢铁生产
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流程的核心工序,高炉稳定、顺行、高效、低耗关系到

整个钢铁企业的经济效益,是钢铁生产节能减排、降
本增效的关键环节。目前,高炉炼铁工艺技术水平

已发展到瓶颈,难以有较大的突破;随着数据科学和

信息技术的蓬勃发展,将大数据技术逐步应用于高

炉炼铁过程中,充分利用炼铁系统积累的数据深度

解析生产过程,研发基于大数据的智能化高炉炼铁

技术,挖掘原燃料条件、工艺操作制度与高炉运行状

态、铁水质量之间的逻辑关系,将大数据、机器学习

与冶炼机制、经验知识相结合,建立高效、科学的高

炉冶炼智慧模型,有望解决高炉数据难表征、状态难

描述、操作难调控的传统难题,是实现高炉炼铁节能

减排和智能化冶炼的重要手段。
为了积极推动智能化技术实施,中国已出台多

项决策部署,如:《中国制造2025》提出构建数字化智

慧钢厂,钢铁业面临数字化转型升级的迫切需求。宝

钢、首钢、武钢、韶钢、攀钢等钢铁企业均制定了智能

制造规划,建设工业数据中心与智能化技术研发平

台。然而中国现有成果相较于发达国家应用仍有较

大差距,尤其是炼铁工序存在基础自动化薄弱、数据

采集与管理难度大、冶炼过程是典型黑箱等问题,智
能化高炉炼铁技术的研发与应用还有较大提升空间。

1 机器学习算法介绍

  随着大数据技术的不断发展,使得支持向量机、
随机森林和神经网络等机器学习算法在钢铁行业方

面的应用取得了不错的效果。本节对工业数据建模

过程中常用到的机器学习算法进行介绍。
(1)支持向量机是在统计学理论的基础上得出

的机器学习算法,它在解决小样本、非线性和高维模

式识别问题上表现出许多独特的优势。随着支持向

量机的不断发展,冶金行业的研究人员把支持向量

机应用于各种参数的预测。文献[1]基于支持向量回

归与极限学习机2种算法对铁水温度构建预测模

型,基于支持向量回归算法构建的预测模型较优,±
10℃

 

误差范围内的命中率高达94%,比极限学习

机预测模型高了5.5%。文献[2]基于支持向量回归

建立了高炉煤气利用率预测模型,并预测结果与多

层感知器模型进行对比,结果表明,支持向量回归模

型在预测1和2h后的煤气利用率时精确度更高,
达到了更好的预测效果。

(2)梯度提升是一种常用于回归和分类问题的

集成学习算法和机器学习技术,以弱预测模型集合

的形式产生预测模型。因其强大的学习能力,尤其

是在表格数据中的表现,在高炉参数预测领域同样

备受关注。文献[3]选用Xgboost模型对高炉透气性

进行预测,结果表明,Xgboost相较于随机森林和线

性回归模型具有较大优势,模型在误差±1.5%范围

内的准确率达到94.27%,能够准确预测下一小时

透气性指数。文献[4]提出一种基于梯度提升决策树

算法的焦炭预测模型,结果表明基于梯度提升决策

树的焦炭质量预测模型相较于线性回归模型、随机

森林模型,决策树模型误差小、准确率高。文献[5]基

于梯度提升决策树(
 

GBDT
 

)算法建立了烧结终点

预测模型,采用网格搜索和交叉验证的方法对模型

参数进行了优化,取得了良好的性能。
(3)神经网络是机器学习中最重要的分支,近年

来,深度学习发展得如火如荼,各领域的研究成果都

非常丰颇。高炉炼铁是一个动态的时间序列,高炉

反应的过程又是渐变的,即当前炉况与历史炉况相

互关联,这就要求神经网络能够动态记忆历史信息,
并在学习新信息的同时保持历史信息的持久性。因

此,将长短期记忆神经网络在高炉参数预测的研究

中取得了显著成效。文献[6]为实现高炉炼铁过程中

铁水硅含量的准确预测,引入神经网络时间序列模型

实现了高炉铁水硅含量智能预报,经测试在预测结果

置信区间95%以上的条件下达到了0.2%以下的预

测绝对误差。文献[7]对比了正常工况下长短记忆模

型(LSTM)和季节性差分自回归模型(SARIMA)不同

预测步数的高炉煤气发生量预测效果,结果表明

LSTM模型的预测精度普遍高于SARIMA模型。
(4)集成学习通过构建和组合多个学习器来完

成学习任务。通过组合多个学习器,通常可以获得

比单一学习器更显著的泛化性能,学习器的预测效

果是随着数据集的不同而变化的,集成学习可以提

高学习系统的泛化性能,并增强学习系统的稳定

性[8]。文献[9]为提高煤气利用率的预测精度,提出

一种基于CEEMDAN-SVM-LSTM
 

的组合模型对

其进 行 预 测。用 长 短 时 间 记 忆 人 工 神 经 网 络

(LSTM)和支持向量机(SVM)分别对分解的高频

模态和低频模态进行预测,最后将模型组合建立了

煤气利用率的组合预测模型。结果表明该组合模型

与单一的
 

SVM
 

模型和LSTM
 

预测模型对比,组合

模型的精度更高。

2 大数据技术在高炉炼铁中的应用

  大数据技术在高炉炼铁中的应用主要体现在高

炉数据预处理、高炉关键指标预测、高炉炉况状态评

·5131·
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价和高炉关键指标优化4个方面,主要研究内容如 图1所示。

图1 大数据技术在高炉炼铁中的应用研究内容

Fig.1 Application
 

of
 

big
 

data
 

technology
 

in
 

blast
 

furnace
 

ironmaking

2.1 高炉数据预处理

  高炉炼铁系统数据具有来源多、范围广、数量

大、维度高、频次多、噪声多、质量低等特点,如何完

成高炉复杂数据的清洗与整合,是实现高炉炼铁系

统智能化的基础。此过程主要包括缺失值和异常值

处理、数据标准化以及数据集成。

2.1.1 高炉缺失数据处理

  高炉炼铁数据缺失问题主要是由于高炉生产过

程中由于传感器失灵、人为操作失误、数据库存储故

障等因素造成的部分数据丢失[10]。处理数据缺失

的方法主要有2种:一是删掉缺失数据所在的数据

项,二是对缺失数据进行填补。填补缺失值可以保

证数据信息的完整性,有利于建立完整、系统的数据

挖掘模型。
(1)少量缺失或大量缺失。如果缺失数据量占

数据集总量的比例低于5%可采取直接删除法,该
种处理办法不会影响数据的有效性,且处理效率高

效[10]。如果数据缺失量较大,数据填补难度将十分

巨大,当数据的缺失率超过60%时,无论采用何种

办法,其所研究的数据都没有任何使用价值[11]。直

接删除法在特定情况下是一种直接、高效的处理手

段,但此种方法会造成一部分数据资源的流失。
(2)间断性数据缺失。间断性数据缺失是指数

据间断性的在短时间内出现数据缺失问题。由于缺

失时间短,尤其当数据频次较高时,在此范围内数据

波动不会发生明显变化,可以通过最近邻值法等对

缺失值进行填补;如果是压力、温度等时间序列数

据,由于时序性数据在一定范围内的波动是可预估

的,因此可以采用插值法[12-14];如果与其他变量数

据存在相关关系的数据(如透气性和压差),可采用

机器学习法建立二者的函数关系完成缺失数据的

填补[15]。
(3)连续性数据缺失。连续性数据缺失是指数

据在长时间内连续出现数据缺失问题。由于长时间

缺失导致在此范围内数据实际变化趋势无法被估

计,插值法填补不能取得理想的效果。但是,如果存

在其密切相关的完整变量数据,通过完整数据寻找

数据之间的内在规律,即便出现长时缺失也可通过

数据间的内在关系采用机器学习法对缺失数据进行

预测填补[16-17]。
2.1.2 高炉异常数据处理

  异常数据的处理与分析也是数据治理中的一个

重要步骤。工业大数据中往往由于各种原因,导致

收集到的数据中存在一些偏离正常范围的异常值

点,忽略异常数值的存在往往对数据分析结果是不

利的[18-19]。然而,由于高炉正常炉况和异常炉况的

数据差异很大,因此在进行异常数据检测时需要根

据炉况状态是否异常而有所区别。
(1)超出工艺范围的异常值。可以通过最大最

小值判断这个变量的取值是否超过了合理的范围,
不合常理的为异常值。例如在正常炉况下,可以依

据高炉现场操作方针的参数范围制定数据筛选

条件。
(2)算法识别的异常值。通过统计学方法或机

器学习的方法判别,目前从数据的统计学性质出发

进行高炉异常数据识别的技术手段主要有以下几

种:拉依达准则(3σ法)、箱型图等方式[15,19-23]
 

。此

类方法在一定程度上剔除了异常值且效率高,但异

常值上下限的确定还是依赖操作人员的经验,例如

箱型图上下四分位差的系数。并且3σ准则要求数

·6131·
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据近似正太分布,并不是所有的数据都适用。从机

器学习的角度出发,目前所采用的主要有聚类算法、
孤立森林法等。利用聚类算法进行异常值识别主要

是选用合适的算法将数据分为各簇,簇与簇之前的

距离大而簇内部的数据间的距离小,因此可以找出

包含大部分正常数据的簇,进而识别异常值[24-25]
 

。
而孤立森林所采用的思想是利用二叉树的特点将全

部数据遍历,将数据按大小分在二叉树的两侧,根据

某点数据被区分出来时所涉及的二叉树的数量进行

异常值识别,所涉及的二叉树数量越小则该点数据

是异常值的可能性越大[26-27]。利用机器学习进行

异常值识别的识别率高但需要消耗的时间也较多。
(3)异常值的处理。在识别出离群值后还需要

观察同时刻其他参数的数据是否也存在异常,以此

甄别产生异常数据的原因是高炉炉况异常引起,还
是数据本身异常。对于无效异常值(错误值或离群

值),一般删除含有异常值的记录,或者将其视为缺

失值,然后按照缺失值的处理方法进行填补;对于有

效异常值(即在特定炉况条件下属于合理值),一般

需要对此类数据进行保留。值得注意的是不同检测

方法对数据具有不同的要求,而高炉数据复杂,异常

值的种类较多,因此不能仅仅采用单一的异常值识

别方法,应综合考虑数据问题和算法自身特点,科学

选择数据处理方法。

2.1.3 高炉数据频次对齐

  高炉炼铁过程中不同数据源存在数据采集频次

不同的问题,大大提升了高炉不同工序数据整合的

难度。例如质检数据和监测数据,前者的数据频次

一般为2~4h,而后者的数据频次多为分钟级或秒

级。当数据存在不同频率,通常的方法有2种,一种

是根据低频数据的周期对高频数据做平均或累加,
或者根据低频数据的周期选取高频数据的最新

值[28];另外一种是将低频数据映射到高频时间索引

上,缺失值用插值补全[29]。将混频数据转换为相同

频率的数据后,使用相同频率的数据进行分析或建

模。但是,这种方法由于人为的数据累加或内插会

引起的原始数据内含的信息量增加和丢失。相关学

者[30-32]提出直接使用混频数据来构建混频数据模

型,这种方式建立的模型充分利用高频数据中的信

息,避免了由于数据处理过程中人为处理而导致的

数据信息虚增与丢失,在一定程度上可以提高宏观

模型估计有效性和预测的准确性。有效解决了不同

工序由于数据采集周期不同导致的数据样本不均衡

和不同工序数据无法直接匹配的问题。

2.1.4 高炉数据标准化

  钢铁工业中流程较多,影响产品质量和性能的

因素错综复杂,每个指标的性质、量纲、数量级、可用

性等特征均可能存在差异,导致无法直接用其分析

研究对象的特征和规律。如果直接用指标原始值进

行分析,数值较高的指标在综合分析中的作用就会

被放大,相对地,会削弱数值水平较低的指标的作

用。以高炉为例,风量的单位是 m3/min,燃料比单

位是kg/t,热负荷的单位是 MJ/h,且它们的数量级

相差较大,不利于模型计算分析,还会降低模型的预

测精度。为了消除参数指标之间的量纲和取值范围

差异的影响,需要对训练数据进行标准化处理,便于

建立有效的机器学习模型。研究中最常用的数据标

准化方法主要为 min-max标准化法和z-score标准

化法[33-34]。

2.2 高炉关键指标预测

  提前掌握高炉关键指标变化对操作者科学判

断、准确调控高炉运行状态至关重要,通过大数据技

术实现高炉关键指标的精准预测是高炉操作者科学

判断高炉炉况动态变化的有效手段。研究较多的高

炉关键预测指标主要有炉热(铁水硅含量和铁水温

度)、焦比、煤气利用率、透气性等。由于高炉冶炼的

复杂性,不同高炉关键指标的影响因素不同,并且不

同冶炼条件下高炉关键指标的影响因素也会有所不

同。另外,高炉参数之间存在不同程度的时间滞后

性。因此,在建立预测模型之前需要进行时滞性分

析和特征选择。

2.2.1 高炉参数间的时滞性分析

  在高炉冶炼过程中,当炉长采取某项控制措施

时,决策变量需要一段时间后才能起到控制作用,这
种现象叫做滞后。现有方法大多是根据相关性系数

或者人工经验的方法,得到最大相关性的某一确定

的滞后时间。如安剑奇等[35]采用灰色相对关联度

分析方法分析了高炉操作与煤气利用率、铁水硅含

量、高炉状态参数的时滞关系;李壮年等[21]通过人

工经验分别对当日、1天、2天后的控制参数赋予权

重,对数据进行时效处理。但是在实际生产过程中,
不同阶段或者不同工况下,参数的滞后时间具有不

确定性,在一定范围内变化,且参数在这个范围内会

有不同程度的波动。因此,此类方法可能会造成滞

后时间不准确以及波动信息缺失,从而导致与实际

炉况不符的现象。针对高炉炼铁生产过程数据大时

滞现象,王玉涛等[36]提出了一种时滞不确定信息的

高炉参数时滞性分析方法,通过计算参数不同阶段
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的滞后时间,得到参数的滞后时间范围,然后将工艺

参数对应时滞范围内均值,方差作为模型输入,有效

提高了模型预测准确率。

2.2.2 高炉关键指标的特征选择

  从众多原燃料参数和操作参数中筛选出与高炉

关键指标有显著关系的参数时,最常用的方法是通

过特征选择技术实现高炉重要影响因素的筛选。特

征选择方法主要分为基于特征排序和基于特征搜

索2类。
(1)基于特征排序采用具体的评价准则给每个

特征打分或设置一个阈值,选择排名前k 个的特

征,选择过程如图2所示。基于特征排序的评价准

则常用的有Pearson相关系数、最大信息系数、主成

分分析等。Pearson相关系数是线性量化关系分析

最常用方法之一,反应的是2个变量之间变化趋势

的方向以及程度,其值范围为-1~1,0表示2个变

量不相关,正值表示正相关,负值表示负相关,值越

大表示相关性越强。王振阳等[1]依据Pearson相关

系数提取了与铁水温度存在强线性相关的高炉参

数,但考虑到Pearson系数不能有效地对非线性关

系的参数进行提取,因此结合Spearman系数获取

了显著影响铁水温度的特征参量。最大信息系数

(MIC)是用来衡量2个参数之间的关联程度,线性

或非线性关系,相较于Pearson相关系数而言有更

高的准确度。最大互信息系数度量具有普适性,其

不仅可以发现变量间的线性函数关系,还能发现非

线性函数关系。张笑凡[37]使用Pearson相关系数

初步挑选出与炉缸活性线性相关性强的特征,然
后针对Pearson相关系数无法捕捉非线性关系的

缺陷,使用了最大信息系数来衡量特征与炉缸活

性之间的依赖关系,提取出与炉缸活性依赖性强

的特征。这种特征选择方法效率高,因此在处理

高维数据时,可在短时间内去除大量的无关特征。
但是高炉冶炼过程复杂,高炉参数之间具有强耦

合性,通过分析单因素对目标的影响程度选择特

征,忽略了特征参数之间的相互作用对高炉经济

指标的实际影响关系,因此基于特征排序的方法

对高炉预测模型精度的提升是有限的。主成分分

析主要思想是将n 维特征映射到k 维上,这k 维

是全新的正交特征也被称为主成分,是在原有n
维特征的基础上重新构造出来的k 维特征。主成

分分析严格来说属于特征提取的一种方法,但也

是通过对方差贡献率进行排序,选取排名靠前的

主成分。刘代飞[38]在进行高炉炉况预测建模时,
利用主元分析对108维的温度场数据进行降维处

理,以86%的信息提取度为准则,形成20维主元

特征参数。但是,经过主成分分析构建的新特征

物理意义与原始特征相差甚远,提取到的特征可

解释性弱,这对指导高炉操作和异常炉况的原因

分析等问题是非常不利的。

图2 基于特征排序的特征选择过程

Fig.2 Feature
 

selection
 

process
 

based
 

on
 

feature
 

ranking

  (2)基于特征搜索属于一种特征组合策略,如图

3所示,此过程中可以直接将模型预测精度或误差

作为度量标准衡量特征子集的整体性能,最终获得

近似的最优子集,要优于只估计单个特征得分的评

价标准。如随机森林算法、XGBoost和LightGBM
中的特征贡献度排序是衡量每个特征重要性的有效

方法[39-41]。特征贡献度排序定义为对单个特征值

进行随机洗牌时模型分数的下降,是在比较具有和

不具有该特征时模型的预测精度,特征贡献度排序

可用于分析特征对输出变量的重要性。赵军等[3]在

建立高炉透气性指数预测模型过程中,以随机森林

模型作为基模型,采取交叉验证法确定特征数量寻

找最佳特征,筛选出冷风流量、鼓风动能、富氧流量

等14个特征参数。遗传算法作为一种基于自然选

择和群体遗传机制的搜索算法,也是处理特征选取

任务最先进的算法之一。张照硕等[42]基于遗传算

法研究了不同的个体选择策略与种群更新策略的结

合对监督学习算法预测准确率的影响,结果表明这
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图3 基于特征组合的特征选择过程

Fig.3 Feature
 

selection
 

process
 

based
 

on
 

feature
 

combination

种方式比将所有特征用于学习的平均准确率更高。
在实际应用当中,可以将多种特征选择方法结

合使用,以提高模型的效率和性能。如图4所示先

通过基于特征排序去除无关特征,然后再通过基于

特征组合选择最优特征集。值得注意的是,完全依

赖数据算法有时也会造成重要信息的丢失,当某个

重要参数一直被控制在合理范围时,由于数据波动

较小,算法很有可能将其判定为无关参数而剔除。
文献[19,43]在基于高炉冶炼机制和专拣经验筛选特

征基础上,采用特征选择技术在剩余特征集中进行

筛选,通过机制与算法结合的方式完整地选择出了

影响铁水质量的重要参数。文献[44]结合遗传算法

与冶金理论提出了一种可解释的特征构造方法,应
用于铁水硅含量预测效果良好提高至93%。更重

要的是,通过构造的许多高质量特征中的共同成分

揭示了过程变量和预测变量之间的内在关系。这些

信息有助于高炉操作者对高炉冶炼过程的理解和控

制。因此,应采取高炉工艺机制结合数据驱动算法

共同完成影响参数的选取。

图4 基于特征排序和特征组合的特征选择过程

Fig.4 Feature
 

selection
 

process
 

based
 

on
 

feature
 

ranking
 

and
 

feature
 

combination

2.2.3 高炉关键指标的预测

  崔桂梅等[45]通过支持向量机和K-means聚类

进行结合,建立类别函数确定预测数据的类别,利支

持向量机对聚类后的每一类数据进行预测,该方法

铁水温度的预测精度较普通支持向量机有所提高。
文献[46]采用径向基函数的最小二乘支持向量机对

铁水[Si]进行预测,采用多折交叉验证方法优化核

函数、正则化参数,取得了较好的预测效果。王文慧

等[47]建立了基于随机森林算法的高炉铁水硅质量

分数预测模型,该研究结果表明不管是在炉况平稳

还是在炉况有较大波动的情形下,随机森林算法都

能获得较高的预测精度。张勇等[48]采用相关分析

法确定影响炉温的主要因素,基于时间序列的小波

神经网络对铁水测温进行预测,较传统的BP神经

网络的预测精度有所提高。刘小杰等[49]通过构建

Adaboost模型、决策树模型和随机森林模型对2
 

h
后的铁水中硅含量进行预测,发现 Adaboost模型

预测的结果相比决策树模型和随机森林模型准确度

更高,能够更好地对铁水硅含量进行捕捉预测。岳

有军等[50]采用粒子群算法对最小二乘支持向量机

进行优化,用优化后的模型对高炉焦比进行预测,结
果表明优化后的方法成功提高了入炉焦比的预测精

度。周继程等[51]利用神经网络预测生铁产量和燃

料比,由于数据样本少,模型命中率较低。周洋

等[52]将聚类算法与神经网络进行结合,通过聚类分

析将高炉数据分为若干类,然后基于神经网络分别

进行训练,实现了高炉焦比预测,模型的预测精度高

于传统神经网络。李壮年等[21]采用了支持向量机、
随机森林、梯度提升树等6种机器学习算法,并采用

特征工程和超参数调优对机器学习预测进行了优

化,最后采用集成学习方法对高炉焦比和透气性进

行了预测,预测结果不仅精准度高而且具有很好的

鲁棒性。
目前已经建立了许多高炉关键参数预测模型,

这些模型在高炉实际生产中发挥着重要作用。然

而,当前高炉关键变量预测多以纯数据驱动模型为

主,大多数模型未能将工艺机制和数据模型进行深

度结合,应用效果与实际生产需求仍有一些差距。
通过相关的冶金工艺理论建立高炉机制模型,将高

炉机制模型的结果作为新的特征。该方法的目的在

于通过机制分析实现对高炉内部难以监测指标的理

论计算。文献[53-54]通过建立布料仿真模型,计算得
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到炉料径向焦炭负荷和炉料落点等重要特征,并采

取高炉布料仿真模型和聚类分析相结合的方法分析

了布料制度与炉况的关系。文献[55]通过高温区碳

氧平衡理论、热平衡理论建立渣铁热量指数模型,将
其中的渣铁热量指数、直接还原度、燃料比偏差等参

数作为新的特征带入炉热预测模型中,有效改善了

模型的预测精度。因此,充分利用高炉炼铁的海量

数据价值,兼顾冶炼机制在关键变量预测的基础作

用,结合大数据技术,建立机制与数据双驱动融合的

高炉智慧模型,并在生产实践中不断验证、优化,方
能取得良好的应用效果。

2.3 高炉炉况状态评价

  在传统高炉操作中,现场作业人员通常依靠对

高炉单个或多个指标的观测,凭经验判断炉况,针对

原燃料的变化趋势,对操作进行调整,尽量避免炉况

失常。随着自动化、信息化不断发展,专家学者不断

尝试采用大数据、机器学习对高炉运行状态进行

管控。
文献[43]选取铁水产量、铁水[Si+Ti]和燃料比

表征高炉炉况,通过数据分析和机器学习获得炉况

评分规则,为高炉运行状态评价梳理新思路。文

献[56]采用因子分析法提取19个状态参数计算高炉

综合状态指标,基于集成学习构建模型预测3h后

高炉运行状态,由于计算因子得分时存在失效情况,
模型准确率不稳定。文献[57-58]提出用时间序列最

小二乘支持向量机方法诊断高炉炉况,该方法实现

了对高炉炉况的分类评价。马钢[59]将诸多高炉各

类参数进行分类、对每个指标设置权重、上下限和区

间分值,建立了高炉综合顺行指数评价分析模型,采
用量化评分的方式对实时参数进行评价。优点在于

选取的高炉参数涵盖范围广能够较全面地反映高炉

炉况状态,不足之处在于参数的评分规则依赖专家

经验,没有充分利用高炉数据中有价值的信息。武

钢[60]基于有限7号高炉开发了高炉炉况诊断系统,
包括炉顶料面雷达监测、炉身上部料层结构模型、高
热负荷区域铜冷却壁热面渣皮监测模型以及高炉过

程参数计算、炉况状态的模式识别等内容,系统上线

应用后高炉利用系数、煤气利用率、燃料比技术指标

有了明显改善,但该系统在对高炉整体内型和内部

状态进行解析、丰富案例库、提高知识库准确度等方

面还需要进一步完善。
大量的高炉运行数据蕴藏着高炉冶炼过程的深

层次特性,但是不充分分析利用高炉的机制知识,仅
仅利用常规的数据驱动建模算法构建高炉模型,必

然很难达到理想的效果[61]。高效融合工业大数据

和专家知识,发挥专家经验的规范作用,构建高炉运

行状态科学评价机制,实现综合炉况实时监控与准

确预测,完成炉况波动科学溯因,是维持高炉稳定顺

行的重要创新手段。

2.4 高炉关键指标优化

  高炉涉及的原燃料种类多而复杂,各变量间存

在强耦合、非线性、大时滞等特点。如何在复杂数

据、复杂动态工况条件下,进行高炉多目标自主优化

决策和自愈控制,成为高炉智能化炼铁的关注热点。
目前,在高炉指标优化控制方面,多采用数据驱动的

方式来优化高炉多个目标,取得了初步效果,但普遍

存动态炉况适应性不强、优化操作解集现场应用性

差、优化过程耗时长等问题。由于高炉冶炼过程的

特殊性和复杂性,现阶段高炉稳定生产主要依靠人

工操作,还无法实现真正意义上的闭环控制,更有效

的方式是通过高炉优化模型为高炉操作者推送优化

建议,协助操作者指导高炉稳定生产。
文献[21,62-64]以焦比、K 值、热负荷、CO2 排放、

成本等作为高炉优化目标,采用遗传算法进行高炉

操作优化,在降低能耗和稳定炉况方面在理论上具

有一定的优化效果,而关于最优解如何在现场合理

应用方面还有很大的差距。由于最优操作解集数量

多、差异大,只追求优化效果而忽略现场生产条件的

约束则会导致最优操作解集应用性变差。对于高炉

现场生产而言,保证高炉的稳定顺行才是首要的,高
炉操作者最期望的是通过调控数量最少、风险最低、
成本最低的操作以达到稳定炉况的目的。因此在反

馈优化操作建议时不仅要追求优化效果,还应综合

考虑现场操作的可行度和操作成本。以低风险、低
经济、高回报作为优化目标,才能推动大数据技术在

高炉优化控制应用方面取得更好的成果。

3 结论与展望

  (1)在高炉数据预处理方面,对于高炉炼铁生产

数据中存在的数据缺失、异常数据和工序间数据匹

配难等问题,应综合考虑数据问题和算法自身特点,
科学选择数据处理方法,完成高炉复杂数据的清洗

与整合,才能多维度提高数据的真实性、准确性和完

整性,使高炉数据质量得到有效改善。
(2)在高炉关键指标预测方面,首先需要通过时

滞性分析消除或者弱化高炉原燃料条件和操作制度

对高炉经济指标时间滞后的影响,提高数据信息的

准确性;在此基础上通过高特征选择技术,筛选出有
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效的输入特征,才能保证高炉关键指标预测模型的

准确率。
(3)在高炉炉况状态评价方面,依赖经验判断炉

况走势,难以准确动态掌握高炉状态;以数据驱动的

高炉炉况评价方法结果可解释性差,不易追溯炉况

扰动原因。因此,需要构建数据信息与工艺机制融

合的高炉智慧模型,才能够实现高炉炉况的科学

评价。
(4)在高炉参数优化控制方面,不仅要追求优化

效果,还应综合考虑现场操作的可行度和操作成本,
以低风险、低经济、高回报作为优化目标,才能推动

大数据技术在高炉优化控制应用方面取得更好的

成果。
(5)应用大数据技术解决高炉炼铁中的“黑箱”

问题,优化冶炼工艺具有巨大的潜力。未来的高炉

将会是大数据技术与高炉冶炼工艺深度融合的数字

化、智能化生产。现阶段研究成果在很大程度上提

高了高炉操作者对智能化高炉的认识,然而要实现

高炉智能化生产,还需要研究者继续探索和完善。
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