模拟CSP工艺试制Hi- B钢在二次再结晶过程中不同退火温度下的组织和织构。使用Zeiss Axioplan金相显微镜(OM)观察试样组织,借助于NOVA400 Nano SEM型场发射扫描电子显微镜进行微观织构EBSD检测分析。结果表明:Goss晶粒在1040℃发生异常长大,异常长大之前晶粒细小均匀,有利的{111}〈112〉和{411}〈148〉织构为主要织构,异常长大后部分晶粒发生快速长大,组织则以Goss织构为主。Goss织构及{111}〈112〉和{411}〈148〉织构的取向差分布主要集中在20°~45°之间,高能晶界理论(HE)能够解释Goss晶粒的异常长大。基体的CSL晶界比例较低,且移动性差的3晶界比例较高,移动性好的5、7、9晶界比例较低,CSL晶界理论对于Goss晶粒的异常长大则不具有说服力。
Abstract
Effects of different annealing temperatures on the microstructure and texture during the secondary recrystallization of Hi- B steel manufactured by simulating CSP process were studied by Zeiss Axioplan optical microscope(OM), NOVA400 Nano field emission scanning electron microscope(SEM) and electron back- scattered diffraction(EBSD). The results show that Goss grains grow abnormally at 1040℃, and the grains are fine and uniform before abnormal growth. The {111}〈112〉 and {411}〈148〉 textures are the main textures. A small number of grains grow rapidly after abnormal growth, and the Goss texture is the main texture. The distributions of misorientation angle of Goss, {111}〈112〉 and {411}〈148〉 orientation are mainly between 20°-45°, the high energy boundary theory (HE) can explain the abnormal growth of the Goss grain. The CSL grain boundary ratio of the matrix is relatively low, the proportion of the 3 grain boundaries with poor mobility is high, the proportion of the 5, 7, 9 grain boundaries is low, and CSL grain boundary theory is not persuasive for abnormal growth of Goss grains.
关键词
Hi-B钢 /
二次再结晶 /
织构 /
取向差 /
CSL晶界
{{custom_keyword}} /
Key words
Hi-B steel /
secondary recrystallization /
texture /
misorientation angle /
CSL boundary
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Su C, Zhao G, Zhang S, et al. Effect of Normalizing Cooling Process and Cold-Rolling Reduction Ratio on the Microstructure and Macro-texture in Hi–B Steel[J]. Metallography Microstructure & Analysis, 2017:1-7.
[2]吴忠旺, 李军, 赵宇,等. 后天抑制剂获得法制取向硅钢析出物的转化规律[J]. 钢铁研究学报, 2011, 23(12):45-48.
(Wu Z W, Li J, Zhao Y, et al. Rules of Precipitate Transformation for Grain-Oriented Silicon Steels Produced by Acquire Inhibitor Method[J]. Journal of Iron and Steel Research, 2011, 23(12):45-48.)
[3]Mengqi, Qian, Ping, et al. Analysis of Micro-texture during Secondary Recrystallization in a Hi-B Electrical Steel[J]. Journal of Materials Science & Technology, 2011, 27(11):1065-1071.
[4]Rajmohan N, Szpunar J A. An analytical method for characterizing grain boundaries around growing goss grains during secondary recrystallization[J]. Scripta Materialia, 2001, 44(10):2387-2392.
[5]Etter A L, Baudin T, Penelle R. Influence of the Goss Grain Neighbourhood during Secondary Recrystallization of Fe-3%Si Sheets[C]// Materials Science Forum. 2002:1251-1256.
[6]龚坚, 李军, 黎先浩,等. 后期渗氮工艺制备取向硅钢的组织转变[J]. 钢铁研究学报, 2016, 28(8):69-74.
(Gong J, Li J, Li X H, et al. Microstructure evolution in grain-oriented Silicon Steels Produced by Nitriding Technique[J]. Journal of Iron and Steel Research, 2016,28(8):69-74)
[7]Humphreys F J, Hatherly M. Abbreviations - Recrystallization and Related Annealing Phenomena (Second Edition)[J]. 2004, 64(9):219-224.
[8]Fernando P A, Lesley P R, Rangel R P. Annealing of Cold-worked Austenitic Stainless Steels[J]. Isij International, 2003, 43(2):135-143.
[9]Gobernado P, Petrov R, Kestens L. Recrystallized {311}<136> orientation in ferrite steels[J]. Scripta Materialia, 2012, 66(9):623-626.
[10]Hayakawa Y, Szpunar J A, Palumbo G, et al. The role of grain boundary character distribution in Goss texture development in electrical steels[J]. Journal of Magnetism & Magnetic Materials, 1996, 160(4):143-144.
[11]Watanabe T. Grain Boundary Character Distribution (GBCD) Analysis of Grain Growth-Related Phenomena in Polycrystalline Materials[C]// Materials Science Forum. 1992:209-220.
[12]Harase J, Shimizu R, Kim J K, et al. The role of high energy boundaries and coincidence boundaries in the secondary recrystallization of grain-oriented silicon steel[J]. Metals and Materials International, 1999, 5(5):429-435.
[13]Shimizu R, Harase J. Coincidence grain boundary and texture evolution in Fe-3%Si[J]. Acta Metallurgica, 1989, 37(4):1241-1249.
[14]Lin P, Palumbo G, Harase J, et al. Coincidence Site Lattice (CSL) grain boundaries and Goss texture development in Fe-3% Si alloy ☆[J]. Acta Materialia, 1996, 44(12):4677-4683.
[15]Rouag N, Vigna G, Penelle R. Evolution of local texture and grain boundary characteristics during secondary recrystallisation of Fe-3% Si sheets[J]. Acta Metallurgica Et Materialia, 1990, 38(6):1101-1107.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金
{{custom_fund}}