为评价应力与环境耦合(交变应力、腐蚀介质和温度耦合)对高强度钢S135疲劳性能的影响,探索应力与环境耦合对高强度钢S135疲劳的作用机制,测试了S135材料在空气中和不同温度下(25、40、60和80℃)有机盐钻井液中的疲劳寿命,分析了S135在有机盐钻井液中的腐蚀疲劳敏感性,并使用扫描电镜观察了不同温度下的断口形貌,研究了有机盐钻井液中S135腐蚀疲劳的断裂机理。结果表明,同一应力(低应力)水平下,随温度升高(25、40、60和80℃),腐蚀疲劳寿命逐渐降低,腐蚀疲劳敏感指数和温度敏感指数逐渐增加。研究认为,交变应力、腐蚀介质和温度耦合对S135材料疲劳有极大的影响,交变应力是疲劳失效的主要因素,腐蚀介质会使S135表面产生腐蚀坑,导致疲劳裂纹的萌生,温度通过加速腐蚀对疲劳破坏产生影响。
Abstract
The aim is to evaluate the coupling effects of stress and environmental factors (alternating stress, corrosive medium and temperature) on the fatigue property of high- strength steel S135 and explore the fatigue mechanism of high- strength steel S135 under the coupling action of stress and environmental factors. The fatigue life of S315 materials in air and organic salt drilling fluid at different temperatures (25, 40, 60 and 80℃) was tested and the corrosion fatigue sensitivity of S135 in organic salt drilling fluid was analyzed. The fracture morphologies at different temperatures were observed under SEM. Based on the above results, the fracture mechanism of S135 corrosion fatigue in organic salt drilling fluid was studied. Under the same stress level (low stress), with the temperature rise (25, 40, 60 and 80℃), the corrosion fatigue life decreased gradually and the corrosion fatigue sensitive indexes and the temperature sensitive indexes increased gradually. It is suggested that the coupling effect of alternating stress, corrosion medium and temperature has a great effect on the fatigue failure of S135 materials. Alternating stress is the main determining factor of fatigue failure. The corrosion medium can cause corrosion pits on the surface of S135, thereby resulting in fatigue crack initiation. Temperature influences fatigue damage by accelerating corrosion.
关键词
高强度钢S135 /
不同温度 /
腐蚀疲劳 /
断口 /
裂纹萌生
{{custom_keyword}} /
Key words
High-strength steel S135 /
different temperature /
corrosion fatigue /
fracture /
crack initiation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Liu Y H, Li Q, Sun Y X, Zhu H J, Zhou Y, Xie J et al. A Repeated Impact Method and Instrument to Evaluate the Impact Fatigue Property of Drill pipe[J]. Journal of Materials Engineering & Performance, 2013, 22(4):1064-1071.
[2] Macdondld K A, Bjune J V. Failure analysis of drill strings[J]. Engineering Failure Analysis, 2007, 14(8): 1641-1666.
[3] Zeng D Z, Tian G, Hu J Y, Zhang Z, Shi T H, Liu W Y, et al. Effect of Immersion Time on the Mechanical Properties of S135 Drill Pipe Immersed in H2S Solution[J]. Journal of Materials Engineering and Performance, 2014, 23(11):4072-4081.
[4] Liu F, Zhou S M, Xia C Y, Zeng D Z, Shi T H. Optimization of fatigue life distribution model and establishment of probabilistic S–N curves for a 165ksi grade super high-strength drill pipe steel[J]. Journal of Petroleum Science & Engineering, 2016, 145:527-532.
[5] Perez-mora R, Palin-luc T, Bathias C, et al. Very high cycle fatigue of a high-strength steel under sea water corrosion: A strong corrosion and mechanical damage coupling[J]. International Journal of Fatigue, 2015, 74:156-165.
[6] Dao NH, Sellami H. Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation[J]. Engineering Fracture Mechanics, 2012, 96:626-640.
[7] 杨宝,许天旱,刘永刚,王荣,何松. 温度对S135钻杆钢在3.5%KCl溶液中腐蚀行为的影响[J]. 腐蚀科学与防护技术,2016,28(1):45-50.
(Yang B, Xu T H, Liu Y G, Wang R, He S. Effect of Temperature on Corrosion Behavior of S135 Drill Steel in 3.5%KCl Solution[J]. Corrosion Science & Protection Technology, 2016, 28(1):45-50.)
[8] 黄本生,陈想,陈勇彬,李永斌. 石油钻杆材料G105在不同条件下的疲劳断裂[J]. 材料工程,2016,44(2):107-114.
(Haung B H, Chen X, Chen Y B, Li Y B Mechanism of fatigue fracture of G105 drill pipe material under different condition[J]. Journal of Materials Engineering, 2016, 44(2): 107-114.)
[9] 李彬,曾德智,施太和,刘飞,喻智明. S135钻杆钢预腐蚀后的弯曲疲劳性能[J]. 表面技术, 2016, 45(3):17-23.
(Li B, Zeng D Z Shi T H, Liu F, Yu Z M. Bending Fatigue Properties of S135 Drill Pipe Steel after Pre-corrosion[J]. Surface Technology, 2016, 45(3):17-23.)
[10] 那顺桑,李杰,艾立群. 金属材料力学性能[M]. 冶金工业出版社,2011.
(Na S S, Li Jie, Ai L Q. Mechanical Properties of Metal Materials [M]. Metallurgical Industry Press, 2011.)
[11] Jafari S, Raman RKS, Davies CHJ, et al. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65:634-643.
[12] Wang CJ. Cause Analysis of Corrosion Holes on S135 Drill Pipe[J]. Surface Technology, 2016, 45(3):58-63.
[13] Lin XQ, Liu W, Wu F, Xu CC, Dou JJ, Lu MX. Effect of O2, on corrosion of 3Cr steel in high temperature and high pressure CO2-O2 environment[J]. Applied Surface Science, 2015, 329:104-115.
[14] Xiao J, Qiu SY, Chen, ZX, Lin, Q, Xu Q, Xie HY. Effects of dissolved oxygen on corrosion fatigue cracking of Alloy 690(TT) in pressurized water reactor environments[J]. International Journal of Fatigue, 2015, 74:65-70.
[15] Tan J, Wu XQ, Han EH, Liu XQ, Xu XL, Sun HT. Corrosion fatigue behavior of Alloy 690 steam generator tube in borated and lithiated high temperature water[J]. Corrosion Science, 2014, 89:203-213.
[16] Xu S., Wu XQ., Han EH, Ke W, Katada Y. Crack initiation mechanisms for low cycle fatigue of type 316Ti stainless s teel in high temperature water[J]. Materials Science & Engineering A, 2008, 490(1):16-25.
[17] 刘轩,刘慧丛,李卫平,叶序彬,朱立群. 7075铝合金在不同温度盐水环境中的腐蚀疲劳行为[J]. 航空学报,2014,35(10):2850-2856.
(Liu X, Liu H C, Li W P, Ye X B, Zhu L Q. Corrosion fatigue behavior of 7075 aluminum alloy in saline water environment at different temperatures[J]. Hangkong Xuebao/acta Aeronautica Et Astronautica Sinica, 2014, 35(10):2850-2856.)
[18] Bayoumi MR. Fatigue behaviour of a commercial aluminium alloy in sea water at different temperatures[J]. Engineering Fracture Mechanics, 1993, 45(3):297-307.
[19] Jiang R, Bull DJ, Properentner D, et al. Effects of oxygen-related damage on dwell-fatigue crack propagation in a P/M Ni-based superalloy: From 2D to 3D assessment[J]. International Journal of Fatigue, 2017, 99:175-186.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
静载、振动与腐蚀作用下H2S/CO2气井完井管柱螺纹密封面的力化学损伤机制研究
{{custom_fund}}