GCr15轴承钢中TiN夹杂物聚合机理研究

田钱仁,尚德礼,王国承

钢铁研究学报 ›› 2018, Vol. 30 ›› Issue (11) : 857-865.

钢铁研究学报 ›› 2018, Vol. 30 ›› Issue (11) : 857-865. DOI: 10. 13228/j.boyuan.issn1001- 0963. 20180094
冶炼与加工

GCr15轴承钢中TiN夹杂物聚合机理研究

  • 田钱仁1,尚德礼2,王国承1,3
作者信息 +

Aggregation mechanism of TiN inclusion in GCr15 bearing steel

  • TIAN Qian- ren1,SHANG De- li2,WANG Guo- cheng1,3
Author information +
文章历史 +

摘要

在对GCr15轴承钢的扫描电镜观察中发现了尺寸不同的2类TiN夹杂物,包括小尺寸单颗粒TiN和多颗粒聚合TiN。对TiN的热力学计算表明,GCr15轴承钢中TiN夹杂物在固液两相区析出。对TiN生长动力学的计算表明,在初始Ti的质量分数为0. 0060%~0. 0078%和N的质量分数为0. 0049%~0. 0070%,TiN析出的局部冷却速度为0. 5~10K/s,析出温度为1620~1640K的条件下,单颗粒TiN最终析出半径为1~6μm。对多颗粒聚合型TiN形成机制研究表明,其是由单颗粒TiN经历了3个阶段形成的:当有距离较近的单颗粒TiN时,两者之间会自发形成腔桥并通过腔桥力相互吸引靠近;当带有活性的TiN尖端接触后,发生碰撞粗化;各基相发生固相烧结。

Abstract

Many different types of TiN inclusions were found in the scanning electron microscope observation of GCr15 bearing steel, including single particle TiN, multi- particle polymerized TiN. The thermodynamic calculation of TiN shows that TiN inclusion in GCr15 bearing steel precipitates in the mushy zone. The calculation of TiN growth kinetics shows that: under the condition that the initial concentration of Ti is 0. 0060 mass%-0. 0078 mass% and the content of N is 0. 0049 mass%-0. 0070 mass%, the local cooling rate of TiN precipitation is 0. 5-10K/s and precipitation temperature is 1620-1640K, the final size of single particle TiN is 1-6μm. The formation mechanisms on multi- particle polymerized TiN reveal that they are formed by single- particle TiN going through three stages as follows: single- particle TiN inclusions approach together by the cavity bridge force; the collision coarsening occurs around the neck region of inclusions; inclusions and new precipitates are sintered in solid phase state.

关键词

GCr15轴承钢 / TiN夹杂物 / 析出 / 聚集 / 腔桥力

Key words

GCr15 bearing steel / TiN inclusion / precipitation / aggregation / cavity bridge force

引用本文

导出引用
田钱仁,尚德礼,王国承 . GCr15轴承钢中TiN夹杂物聚合机理研究[J]. 钢铁研究学报, 2018, 30(11): 857-865 https://doi.org/10. 13228/j.boyuan.issn1001- 0963. 20180094
TIAN Qian- ren,SHANG De- li,WANG Guo- cheng,. Aggregation mechanism of TiN inclusion in GCr15 bearing steel[J]. Journal of Iron and Steel Research, 2018, 30(11): 857-865 https://doi.org/10. 13228/j.boyuan.issn1001- 0963. 20180094

参考文献

[1]王新华, 姜敏, 于会香,等. 超低氧特殊钢中非金属夹杂物研究[J]. 炼钢, 2015, 31(6):1-12.
[2]Hoo J.J.C. Effect of steel manufacturing processes on the quality of bearing steels[M]. ASTM Int. STP987, Baltimore, 1988: 308-330.
[3]Fu J, Zhu J, Di L, et al. Study on the precipitation behavior of TiN in the micro-alloyed steels[J]. ACTA METALLURGICA SINICA-CHINESE EDITION, 2000, 36(8): 801-804.
[4]金友林, 杨丽珠. 高碳抗疲劳应力钢TiN夹杂物形成机理及控制研究[J]. 安徽冶金, 2012(4):1-5.
[5]杨俊, 王新华, 龚志翔,等. 超低氧车轮钢中TiN夹杂析出的热力学分析及控制[J]. 北京科技大学学报, 2010, 32(9):1138-1143.
[6]张学伟, 张立峰, 杨文,等. 重轨钢中碳氮化物析出动力学分析与控制[J]. 炼钢, 2016, 32(5):41-47.
[7]薛正良, 金武涛, 雷家柳,等. 帘线钢生产中钛夹杂的析出与控制[J]. 炼钢, 2016, 32(4):23-32.
[8]田新中, 刘润藻, 周春芳,等. 轴承钢中TiN夹杂物的控制研究[J]. 北京科技大学学报, 2009(s1):150-153.
[9]曾新光. 轴承钢中TiN夹杂物析出的控制[J]. 北京科技大学学报, 2009(s1):145-149.
[10]Zhou Deguang , Fu Jie, Chen Xichun, et al. Precipitation Behavior of TiN in Bearing Steel[J].J Mater Sci Technol., 2003, 19 (02): 184-186.
[11]Yang Xine , Cheng Guoguang, Wang Minling, et al.Precipitation and growth of titanium nitride during solidification of clean steel[J]. J. Univ. Sci.Technol. Beijing, 2003, 10 (5): 24-26.
[12]黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 2014. 181.
[13]Gulliver G.M.: Metallic Alloys[M].London: Griffen,1922.
[14]E. Scheil. Influence of Cooling Rate on Microsegregation Behavior of Magnesium Alloys[J]. Zeitschrift Metallkunde, 1942, 34: 70-72.
[15]Chen P. , Zhu C. and Li G. Effect of Sulphur Concentration on Precipitation Behaviors of MnS-containing Inclusions in GCr15 Bearing Steels after LF Refining[J]. ISIJ International 2017, 57 (6): 1019-28
[16]Ma W. J. , Bao Y.P. and Zhao L.H. Control of the precipitation of TiN inclusions in gear steels[J]. Int. J. Mine. Metall. Mater. 2014, 21 (3): 234-39.
[17]Yin H., Shibata H. and Emi T. "In-situ" Observation of Collision, Agglomeration and Cluster Formation of Alumina Inclusion Particles on Steel Melts[J]. ISIJ International, 1997, 37 (10): 936-945.
[18]Yin H., Shibata H. and Emi T.Characteristics of Agglomeration of Various Inclusion Particles on Molten Steel Surface[J]. ISIJ International, 1997, 37 (10): 946-955.
[19]Shibata H., Yin H.and Yoshinaga S. In-situ Observation of Engulfment and Pushing of Nonmetallic Inclusions in Steel Melt by Advancing Melt/Solid Interface[J]. ISIJ International, 1998, 38 (2): 149-56.
[20]陈家祥,炼钢常用图表数据[M]. 北京: 冶金工业出版社, 2010. 421.
[21]Sasai K. Interaction between Alumina Inclusions in Molten Steel Due to Cavity Bridge Force[J]. ISIJ International, 2016, 56(6): 1013-1022.
[22]Sasai K. Direct Measurement of Agglomeration Force Exerted between Alumina Particles in Molten Steel[J]. ISIJ International 2014, 54 (12): 2780-2789.
[23]Bratko D., Curtis R. A., H. W. Blanch, et al.Interaction between hydrophobic surfaces with metastable intervening liquid[J]. J. Chem.Phys, 2001, 115 (8): 3873-3877.
[24]Singh S, Houston J, van Swol F, et al. Superhydrophobicity: drying transition of confined water[J]. Nature, 2006, 442(7102): 526-526.
[25]Ishida N, Inoue T, Miyahara M, et al. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy[J]. Langmuir, 2000, 16(16): 6377-6380.
[26]Parker J L, Claesson P M, Attard P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces[J]. The Journal of Physical Chemistry, 1994, 98(34): 8468-8480.
[27]Carambassis A, Jonker L C, Attard P, et al. Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble[J]. Physical Review Letters, 1998, 80(24): 5357.
[28]Podgornik R. Electrostatic correlation forces between surfaces with surface specific ionic interactions[J]. The Journal of Chemical Physics, 1989, 91(9): 5840-5849.
[29]吴铿,冶金传输原理[M]. 北京: 冶金工业出版社, 2011. 7.
[30]Lu Y, Song S, Shen X, et al. Low-power phase change memory with multilayer TiN/W nanostructure electrode[J]. Applied Physics A, 2014, 117(4):1933-1940.
[31]Podgornik R. Electrostatic correlation forces between surfaces with surface specific ionic interactions[J]. Journal of Chemical Physics, 1989, 91(9):5840-5849.
[32]Johnson J.L., German R.M. in Advances in Powder Metallurgy[M], Metal Powder Industry Federation, Princeton, 1993, 4: 201-213.
[33]Johnson J.L., Hens K.F., German R.M. in Tungsten and Refractory Metals-1994[M], Metal Powder Industry Federation, Princeton, 1995: 246-252.
[34]Johnson J.L., German R.M. Theoretical modeling of densification during activated solid-state sintering[J]. Metall. Mater. Trans. A, 1996, 27A: 441-450.
[35]Johnson J.L., German R.M.Solid-state contributions to densification during liquid-phase sintering[J]. Metall. Mater. Trans. B, 1996, 27 (6): 901-09.

基金

固体反应过程中双相界面层形成的物理化学;鞍钢海工钢国家重点实验室-辽宁科技大学合作项目

Accesses

Citation

Detail

段落导航
相关文章

/