连铸结晶器黏结漏钢的可视化及其识别方法

刘宇 王旭东 姚曼 张晓兵

钢铁研究学报 ›› 2015, Vol. 27 ›› Issue (7) : 37-41.

钢铁研究学报 ›› 2015, Vol. 27 ›› Issue (7) : 37-41. DOI: 10.13228/j.boyuan.issn1001- 0963.20140180
冶炼与加工

连铸结晶器黏结漏钢的可视化及其识别方法

  • 刘宇1,王旭东1,2,姚曼1,张晓兵2
作者信息 +

Visualization and recognition method of sticker breakout of mold during continuous casting process

  • LIU Yu1,WANG Xu- dong1,2,YAO Man1,ZHANG Xiao- bing2
Author information +
文章历史 +

摘要

基于现场实测热电偶温度数据,将结晶器铜板温度及其变化速率进行2维可视化。综合考虑黏结形成和发展过程中结晶器铜板温度随时间的变化和空间传播行为,借助计算机图像处理中的8连通区域标记和边界跟踪算法,提取了异常区域的结晶器铜板温度、位置、时间等信息,计算了结晶器铜板温度变化速率的均值、最大值、区域的面积、宽度、高度及其纵向和横向移动速率特征,对实际浇铸过程中多例漏钢样本的共性特征进行了统计和归纳。结果表明,结晶器铜板温度变化速率、几何特征与传播速率能够作为黏结漏钢在线预报的重要判据,为提高漏钢预报系统准确率提供参考,减少漏钢事故,同时为结晶器可视化、智能化监控技术开发提供方法和依据。

Abstract

Based on the measured temperature of thermocouple, the two- dimensional temperature and its change velocity at copper plate of mold during continuous casting process were visualized. The propagation behaviors of the temperature at copper plate of mold in time and space were considered synthetically during the formation and development of sticker breakout. The temperature, position and time at abnormal zone were extracted by virtue of 8 connected component labeling and boundary tracking algorithm in computer image processing. The average and maximum change velocities of the temperature as well as area, width, height, characteristics of vertical and horizontal propagation velocities of the zone were also calculated. The common features of samples of sticker breakout were analyzed by statistical induction during continuous casting process. The results show that the change velocity of the temperature, geometry characteristic and propagation velocity can be used as main criterions for online prediction of sticker breakout and are helpful to enhance the accuracy of prediction system of sticker breakout which can be used to decrease sticker breakout. Meanwhile, they offer the method and basis to develop a visual and intelligent monitoring technology for mold.

关键词

连铸 / 结晶器 / 黏结漏钢 / 可视化 / 识别方法

Key words

continuous casting / mold / sticker breakout / visualization / recognition method

引用本文

导出引用
刘宇 王旭东 姚曼 张晓兵. 连铸结晶器黏结漏钢的可视化及其识别方法[J]. 钢铁研究学报, 2015, 27(7): 37-41 https://doi.org/10.13228/j.boyuan.issn1001- 0963.20140180
LIU Yu,WANG Xu- dong,,YAO Man,ZHANG Xiao- bing. Visualization and recognition method of sticker breakout of mold during continuous casting process[J]. Journal of Iron and Steel Research, 2015, 27(7): 37-41 https://doi.org/10.13228/j.boyuan.issn1001- 0963.20140180

参考文献

[1] Qin X, Zhu C F, Zheng L W, et al. Molten steel breakout prediction based on thermal friction measurement. Journal of Iron and Steel Research, 2011, 18 (4): 24.
[2] Kumar S, Samarasekera I V, Brimacombe J K, et al. Development of intelligent mould for online detection of defects in steel billets[J]. Ironmaking and Steelmaking, 1999, 26(4): 269.
[3] 赵琦, 朱苗勇. 基于改进模糊ART神经网络的连铸漏钢预报模型[J]. 中国冶金, 2007, 17(10): 26.
[4] 秦旭, 朱超甫, 高光河, 等. 板坯漏钢机理及基于热电偶检测的漏钢预报技术研究[J]. 钢铁研究学报, 2011, 23(2): 7.
[5] Sohn I, Piccone T J, Natarajan T T. Detection of mold events using thermocouple measurements. Iron & Steel technology, 2008, 5(1): 44.
[6] Watzinger J, Pesek A, Huebner N, et al. MoldExpert-operational experience and future development. Ironmaking and Steelmaking, 32(3): 208.
[7] 张勇, 张慧, 袁林涛, 等. 板坯漏钢预报系统的研究及应用[J]. 钢铁研究, 2013, 41(5): 23.
[8] Mahdi S M. Breakout problems study of continuous casting steel, Journal of Materials and Metallurgical Engineering, 2012, 2(2): 1.
[9] 刘宇, 王旭东, 施桂钱, 等. 板坯连铸结晶器黏结及其传播行为[J]. 钢铁, 2014, 49(2): 31.
[10] 杨水山. 冷轧带钢表面缺陷机器视觉自动检测技术研究[D]. 哈尔滨:哈尔滨工业大学, 2009.

基金

国家高技术研究发展计划(863)资助项目;国家自然科学基金资助项目;中国博士后科学基金资助项目

43

Accesses

0

Citation

Detail

段落导航
相关文章

/