亚临界区淬火温度对一种新型“锰代镍”低温钢组织演变及力学性能的影响

吴年春

钢铁研究学报 ›› 2014, Vol. 26 ›› Issue (10) : 60-65.

钢铁研究学报 ›› 2014, Vol. 26 ›› Issue (10) : 60-65. DOI: 10.13228/j.boyuan.issn1001-0963.20140145
材料研究

亚临界区淬火温度对一种新型“锰代镍”低温钢组织演变及力学性能的影响

  • 吴年春
作者信息 +

Effects of Intercritical Quenching Temperature on Microstructural Evolution and Mechanical Properties of a New Type of Cryogenic Steel With Ni Replaced by Mn

  • WU Nian-chun
Author information +
文章历史 +

摘要

利用X射线衍射仪(XRD)、电子背散射衍射(EBSD)和透射电子显微镜(TEM)研究了亚临界区淬火温度对一种新型“锰代镍”低温钢组织演变及力学性能的影响。结果表明,随着亚临界区淬火温度的升高,室温亚稳奥氏体的体积分数逐渐降低。当亚临界区淬火温度为700和740℃时,亚稳奥氏体主要以片层状在回火马氏体板条间析出,且排列方向与周围的马氏体板条平行,这种片层状亚稳奥氏体分布较为均匀,尺寸较小,厚度约为100nm,且稳定性较高;当亚临界区淬火温度为780℃时,试验钢中出现尺寸较大的块状奥氏体,在回火马氏体界面的交叉处不均匀析出。分析表明,不同热处理制度下基体“有效晶粒”尺寸、所生成的亚稳奥氏体体积分数及其稳定性的不同是导致不同亚临界区淬火温度下试验钢低温韧性差异的主要原因。

Abstract

Effects of intercritical quenching temperature on microstructural evolution and mechanical properties of a new type of cryogenic steel with Ni replaced by Mn were investigated by XRD, EBSD and TEM. The results show that the volume fraction of metastable austenite at room temperature decreases with the increase of intercritical quenching temperature. When interctritical quenching temperature is at 700 or 740℃, metastable austenite mainly precipitates in the shape of thin film along the lath boundaries of tempered martensite, paralleling to the surrounding martensitic laths. This “film-type” metastable austenite is uniformly distributed and stable, with a thickness of about 100nm. When intercritical quenching temperature is 780℃, the volume faction of “film-type” metastable austenite decreases, and large “blocky-type” metastable austenite appears at the junction of interface of tempered martensite. Analysis indicates that the differences on “effective grain size” of matrix, volume fraction of metastable austenite and its stability caused by different heat treatment process lead to the difference on low temperature toughness of the tested steel at different intercritical quenching temperature.

关键词

亚临界区淬火 / 低温钢 / 组织 / 力学性能 / 低温韧性

Key words

intercritical quenching / cryogenic steel / microstructure / mechanical property / low-temperature toughness

引用本文

导出引用
吴年春. 亚临界区淬火温度对一种新型“锰代镍”低温钢组织演变及力学性能的影响[J]. 钢铁研究学报, 2014, 26(10): 60-65 https://doi.org/10.13228/j.boyuan.issn1001-0963.20140145
WU Nian-chun. Effects of Intercritical Quenching Temperature on Microstructural Evolution and Mechanical Properties of a New Type of Cryogenic Steel With Ni Replaced by Mn[J]. Journal of Iron and Steel Research, 2014, 26(10): 60-65 https://doi.org/10.13228/j.boyuan.issn1001-0963.20140145

参考文献

[1]FULTZ B, KIM J I, KIM Y H, et al. The stability of precipitated austenite and the toughness of 9Ni steel[J]. Metallurgical Transactions A, 1985, 16(12): 2237-2249.
[2]SYN C K, FULTZ B, MORRIS J W. Mechanical stability of retained austenite in tempered 9Ni steel[J]. Metallurgical Transactions A, 1978, 9(11): 1635-1640.
[3]张弗天, 王景韫, 郭蕴宜.Ni9钢中的回转奥氏体与低温韧性[J].金属学报,1984, 20(6):405-410.
[4]杨跃辉, 蔡庆伍, 武会宾,等.两相区热处理中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J].金属学报, 2009, 45(3), 270-274.
[5]雷鸣, 郭蕴宜. 9% Ni 钢中沉淀奥氏体的形成过程及其在深冷下的表现[J].金属学报, 1989, 25(1): 13-17.
[6]KIM J I, SYN C K, MORRIS J W. Microstructural sources of toughness in QLT-treated 5.5 Ni cryogenic steel[J]. Metallurgical Transactions A, 1983, 14(1): 93-103.
[7]KIM J I, KIM H J, MORRIS J W. The role of the constituent phases in determining the low temperature toughness of 5.5 Ni cryogenic steel[J]. Metallurgical Transactions A, 1984, 15(12): 2213-2219.
[8]SANG WOO LEE, HU-CHUL LEE. The Mechanical Stability of Austenite and Cryogenic Toughness of Ferritic Fe-Mn-Al Alloys [J].Metallurgical Transactions A, 1993, 24A :1333-1342.
[9]HUANG J, POOLE W J, MILITZER M. Austenite formation during intercritical annealing[J]. Metallurgical and Materials Transactions A, 2004, 35(11): 3363-3375.
[10]YANG Y, CAI Q, TANG D, et al. Precipitation and stability of reversed austenite in 9Ni steel[J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(5): 587-595.
[11]WU S J, SUN G J, MA Q S, et al. Influence of QLT treatment on microstructure and mechanical properties of a high nickel steel[J]. Journal of Materials Processing Technology, 2012, 213(1): 120-128.
[12]MORRIS J W, GUO Z, KRENN C R, et al. The limits of strength and toughness in steel[J]. ISIJ international, 2001, 41(6): 599-611.
[13]王长军. 多相组织钢亚稳奥氏体与析出相调控及其力学行为研究(D). 钢铁研究总院博士学位论文, 2013, p.51-86.
[14]CHIANG J, LAWRENCE B, BOYD J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels[J]. Materials Science and Engineering: A, 2011, 528(13): 4516-4521.
[15]LI L, GAO Y, ZHU N Q, et al. Technology for high performance TRIP steel[J]. Science China Technological Sciences, 2012, 55(7): 1823-1826.
[16]FULTZ B, MORRIS J W. A m?ssbauer spectrometry study of the mechanical transformation of precipitated austenite in 6Ni steel[J].Metallurgical and Materials Transactions A, 1985, 16:173-177.
[17]MORRIS J W, JR, KIM J I, FULTZ B. Consequences of the Re-Transformation of Precipitated Austenite in Ferritic Cryogenic Steels[R].Cambridge: Lawrence Berkeley National Laboratory, 1979.

Accesses

Citation

Detail

段落导航
相关文章

/