从拉伸应变硬化指数n的物理意义出发,提出一种建立真应力与真应变关系数学模型的方法,即通过寻求应变硬化指数与真应变的函数关系,求解微分方程得到真应力与真应变的关系。结合对一种面心立方合金拉伸应变硬化规律的研究,建立了一个新的真应力与真应变关系的数学模型。对另一部分金属材料的研究表明,该模型适用于描述在变形过程中不发生相变的稳定面心立方金属材料的拉伸真应力与真应变的关系。
Abstract
According to the physical significance of strain hardening exponent n, a mathematical modeling method for tensile true stress-true strain relationship was presented, that was, by looking for the function between strain hardening exponent and true strain, the differential equation was solved to acquire relationship between true stress and true strain. By this method, with the investigation of the tensile strain hardening behavior of an FCC metal, a new mathematical model which describes relationship between true stress and true strain of the alloy was built up. According to the research of some other metals,this model can be used to describe relationship between true stress and true strain of stable FCC alloys without strain induced phase transformation during deformation.
关键词
应力 /
应变 /
应变硬化指数 /
数学模型 /
面心立方金属
{{custom_keyword}} /
Key words
Stress /
Strain /
Strain Hardening Exponent /
Model /
FCC Metals
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ludwigson D C. Modified Stress-Strain Relation for FCC Metals and Alloys [J]. Metall Trans, 1971, 2(10):2825-2828.
[2] 宋玉泉,程永春,刘颖. 拉伸变形应变硬化指数的力学涵义及其规范测量[J].中国科学,2000,30(3):200-207.
[3] HOLLOMON J H. The Effect of Heat Treatment and carbon Content on the Work Hardening Characteristics of Several Steels [J]. Trans of ASM, 1944, 32: 123-133.
[4] G.K.Young, J.K.Han Metall. Trans. A., 16A, 1689(1985).
[5] G.K.Young, Y.L.Cha. Metall. Trans. A. 19A, 1625(1987).
[6] 付瑞东,邱亮,王存宇,郑炀曾. 氮强化高锰奥氏体低温钢的拉伸应变硬化行为[J].材料研究学报,2005,19 (2):196.
[7] TIAN X, ZHANG Y S. Mathematical Description for Flow Curves of Some Stable Austenitic Steels[J]. Mater. Sci. Eng, 1994, A174: L1.
[8] 田兴,田如锦,王爱宝. 奥氏体不锈钢304L和304LN的加工硬化特点[J]. 大连铁道学院学报,2001,22 (4):61.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}