回火温度对TiC 增强耐磨钢TiC 粒子析出行为的影响

王墉哲, 刘俊亮

钢铁研究学报 ›› 2015, Vol. 27 ›› Issue (8) : 59-63.

钢铁研究学报 ›› 2015, Vol. 27 ›› Issue (8) : 59-63. DOI: 10.13228/j.boyuan.issn1001-0963.20150041
材料研究

回火温度对TiC 增强耐磨钢TiC 粒子析出行为的影响

  • 王墉哲, 刘俊亮
作者信息 +

Effect of tempering temperature on precipitation behavior of TiC particles in TiC strengthened antifriction steel

  • WANG Yong-zhe,  LIU Jun-liang
Author information +
文章历史 +

摘要

通过对新型TiC 增强耐磨钢进行在线回火热模拟试验,采用扫描电子显微镜(SEM) 结合能谱INCA Feature 功能分析了回火温度对TiC 粒子体积分数和尺寸分布的影响。结果表明:与未经热处理的试验钢相比,回火后钢中TiC 析出相的体积分数有所增加。但温度较低时(500 ℃),析出相增加不明显且小尺寸粒子(1~3 μm) 所占比例偏低,大于5 μm 的析出相所占比例高。随回火温度的增加,高于550 ℃后,析出相总量显著提高,同时尺寸分布在1~3 μm 范围内的粒子所占比例明显增加,650 ℃回火时,达到72% 左右。且粒子的最大尺寸及其比例均下降。因此,500 ℃回火主要有利于TiC 粒子的粗化长大,而温度超过550 ℃后则TiC 粒子的形核、析出过程更加显著,粒子尺寸较小。

Abstract

Effect of tempering temperature on the volume fraction and size distribution of TiC particles in TiC strengthened antifriction steel was analyzed by on-line tempering thermal simulation technique, SEM and INCA Feature. The results show that the volume fraction of TiC in the steel increases after tempering. But at 500 ℃, the increase is not obvious and the proportion of TiC particles with small size (1—3 μm) is low. What’s more, the proportion of TiC particles with size larger than 3 μm, especially larger than 5 μm, is very high. On the contrary, after tempering temperature exceeds 550 ℃, the summation of precipitations and the proportion of TiC particles with small size (1—3 μm) increase rapidly. When tempering temperature is 650 ℃, the proportion of TiC particles with small size (1—3 μm) reaches about 72%. In addition, both the largest size and its proportion of precipitations drop. So tempering at 500 ℃ is propitious to the growth of TiC particles. While when tempering temperature is larger than 550 ℃, it is beneficial to the nucleation and precipitation of TiC particles, which makes TiC particles small.

关键词

耐磨钢 / TiC析出相 / 尺寸分布

Key words

antifriction steel / TiC precipitates / size distribution

引用本文

导出引用
王墉哲, 刘俊亮. 回火温度对TiC 增强耐磨钢TiC 粒子析出行为的影响[J]. 钢铁研究学报, 2015, 27(8): 59-63 https://doi.org/10.13228/j.boyuan.issn1001-0963.20150041
WANG Yong-zhe,  LIU Jun-liang. Effect of tempering temperature on precipitation behavior of TiC particles in TiC strengthened antifriction steel[J]. Journal of Iron and Steel Research, 2015, 27(8): 59-63 https://doi.org/10.13228/j.boyuan.issn1001-0963.20150041

参考文献

[1]姚思佳,孙扬善,薛峰. TiC强化中锰钢的组织与性能研究[J]. 铸造,2010,59(3):284-288.
[2]赵显鹏. TiC硬质相增强高碳钢复合材料的研究[J]. 硬质合金,2009,26(4):232-236.
[3]X H Wang, S L Song, Z D Zou. Characterization of in Situ Synthesized TiC Particle Reinforced
Fe-Based Composite Coatings Produced by Multi-Pass Overlapping GTAW[J]. Surface &
Coatings Technology, 2007,201:5899.
[4]吴钱林,孙扬善,扬才定. 原位TiC颗粒弥散强化普碳钢的磨损性能[J]. 东南大学学报,2006,36(5):836.
[5]郑洋,刘中益,李卫. 薄带坯连铸连轧低合金耐磨钢磨料磨损特性[J]. 钢,2014,49(3):63-67.
[6]
[7]薛润东,赵志毅,王明侠. 均热时间对含Ti/Nb微合金元素高强钢固溶规律的影响[J]. 北京大学学报,2007,29(9):906-910.
[8]马家艳; 张贤忠; 关云; 黄海娥; 韩荣东; 邓照军. 冷却速度对钒微合金钢的组织
和析出相的影响[J]. 物理测试,2011,10(增刊):21-24.
[9]Y L REN, L QI, L M FU, et al. Microstructural Characteristics of TiC and (TiW)C Iron Matrix
Composites[J]. Journal of Materials Science, 2002,37:5129.
[10]C.Chattopadhyay, S.Sangal, K.Mondal. Improved wear resistance of medium carbon microalloyed bainitic steels[J]. Wear,2012,289:168-179.

Accesses

Citation

Detail

段落导航
相关文章

/