功率超声作用下连铸结晶器水模型流场实验

王建军,蒙李朋,王海军,常立忠

钢铁研究学报 ›› 2016, Vol. 28 ›› Issue (11) : 29-33.

钢铁研究学报 ›› 2016, Vol. 28 ›› Issue (11) : 29-33. DOI: 10.13228/j.boyuan.issn1001-0963.20150378
冶炼与加工

功率超声作用下连铸结晶器水模型流场实验

  • 王建军1,蒙李朋1,王海军2,常立忠1
作者信息 +

Experimental research on fluid field in water modeling of continuous casting mold under power ultrasound

  • WANG Jian-jun1,MENG Li-peng1,WANG Hai-jun2,CHANG Li-zhong1
Author information +
文章历史 +

摘要

借助连铸结晶器水模型和高速摄像技术研究了不同功率超声和超声处理时间对连铸结晶器内钢液流场的影响。结果表明:未加超声处理时,流场在横向以及纵向上的均匀度较差。超声功率400W时流场较300W时有显著改善,随着超声功率的增加,流场中心深度先增加后降低。超声处理功率500W、45s时,流场中心相对深度为056,超声空化作用适宜,有效改善了结晶器内的钢液动力学条件。超声功率600、700W时,流场中心相对深度分别为046、041,流场深度较浅,造成钢中的夹杂物没有足够的时间上浮去除,同时还会造成液面波动,甚至引起卷渣。

Abstract

The effects of different power ultrasound and sonication time on the fluid field of continuous casting mold were studied by water modeling and high-speed camera technology in the laboratory. The results show that the fluid field has a bad uniformity both in transverse and longitudinal direction. When the ultrasonic power increases from 300W to 400W, the fluid field uniformity is improved. Meanwhile, with increasing the ultrasonic power , the depth of the fluid field center increases firstly and then decreases. With the ultrasonic power of 500W for 45s, the depth of the fluid field center is the deepest, and the relative depth is 056 Moreover, the appropriate ultrasound cavitation can improve the dynamic condition of the molten steel in the mold. At the ultrasonic power of 600W or 700W, the relative depth is 046 and 041 respectively; meanwhile, the depth of fluid field is shallow, and the inclusions in steel have no enough time to float and remove. Simultaneously, it can result in level fluctuation and even slag entrapment.

关键词

功率超声,结晶器,水模,流场

Key words

ultrasonic power, mold, water modeling, fluid field

引用本文

导出引用
王建军,蒙李朋,王海军,常立忠. 功率超声作用下连铸结晶器水模型流场实验[J]. 钢铁研究学报, 2016, 28(11): 29-33 https://doi.org/10.13228/j.boyuan.issn1001-0963.20150378
WANG Jian-jun,MENG Li-peng,WANG Hai-jun,CHANG Li-zhong. Experimental research on fluid field in water modeling of continuous casting mold under power ultrasound[J]. Journal of Iron and Steel Research, 2016, 28(11): 29-33 https://doi.org/10.13228/j.boyuan.issn1001-0963.20150378

参考文献

[1]. 于会香,王新华,陆巧彤,等. 结晶器内钢液流动特性的优化[J]. 北京科技大学学报, 2009, 31(4):477.
[2]. 包燕平,朱建强, 蒋伟,等. 薄板坯连铸结晶器内流场的三维数据模拟[J]. 北京科技大学学报, 2000, 22(5): 409.
[3]. 包燕平,张涛,蒋伟,等. 板坯连铸结晶器内钢液流场的三维数学模型[J]. 北京科技大学学报,2001,23 (2):106.
[4]. 王维维,张家泉,陈素琼,等. 水口侧孔倾角对大方坯结晶器流场和液面波动的影响[J]. 北京科技大学学报, 2007, 29 (8):816.
[5]. Xu H ,Han Q,Meek T T. Effects of ultrasonic vibration on degassing of aluminum alloys[J]. Materials Science and Engineering: A, 2008, 473 (1-2):96.
[6]. Lei Y, Hai H, Ji S H, etc.. Effects of ultrasonic vibration on solidification structure and properties of Mg-8Li-3Al alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21 (6):1241.
[7]. 白晓清,赫冀成. 超声波作用下金属液中微小夹杂物的凝聚过程[J]. 钢铁研究学报, 2001,13(06): 1.
[8]. 白晓清,赫冀成. 超声波作用下微粒凝集过程参数的研究[J]. 东北大学学报(自然科学版), 2001, 22(04): 413.
[9]. Liu Q, Zhai Q, Qi F, etc.. Effects of power ultrasonic treatment on microstructure and mechanical properties of T10 steel[J]. Materials Letters, 2007, 61 (11-12): 2422.
[10]. 何祚镛. 声学理论基础[M],北京:国防工业出版社, 1981.
[11]. 白晓清.超声波作用下液体中夹杂物迁移行为[D],东北大学,2002.
[12]. 亢淑梅, 沈明钢, 李成威. 超声波钢包精炼应用基础[M].北京:冶金工业出版社,2014.

基金

超声波作用下高温坯壳与结晶器铜板分离的机理研究

86

Accesses

0

Citation

Detail

段落导航
相关文章

/