基于计算机视觉的烧结机尾断面图像研究进展

熊大林1,张功辉2,余正伟1,陈良军1,张学锋2,龙红明1

钢铁研究学报 ›› 2022, Vol. 34 ›› Issue (9) : 869-883.

钢铁研究学报 ›› 2022, Vol. 34 ›› Issue (9) : 869-883. DOI: 10.13228/j.boyuan.issn1001-0963.20210183
综合论述

基于计算机视觉的烧结机尾断面图像研究进展

  • 熊大林,张功辉,余正伟,陈良军,张学锋,龙红明
作者信息 +

Research progress of sinter tail sectional image based on computer vision

  • XIONG Dalin,ZHANG Gonghui,YU Zhengwei,CHEN Liangjun,ZHANG Xuefeng,LONG Hongming
Author information +
文章历史 +

摘要

摘要:烧结机尾的断面可以最直接地反映烧结过程控制与烧结矿质量的丰富信息。如何利用计算机视觉技术对机尾断面的特征进行提取,并实现烧结矿质量的精准预报和控制,是智慧烧结的重点研究内容之一。首先对烧结机尾断面图像的去噪、分割和特征提取等图像预处理方式进行了全面的对比和分析,然后从烧结矿FeO含量、烧结终点、转鼓强度、布料均匀性和烧结混合料水分等方面剖析了烧结机尾断面图像分析技术在烧结矿质量预报和控制方面的应用情况。另外,以烧结矿FeO含量预报为例,揭示了基于计算机视觉的烧结机尾断面图像研究的发展和演变规律,并指明了当前研究的不足以及未来的发展趋势。

Abstract

Abstract: The section of the tail of sintering machine can directly reflect the rich information of sintering process control and sinter quality. How to use computer vision technology to extract the characteristics of the tail section and realize the accurate prediction and control of sinter quality is one of the key research contents of intelligent sintering. The image preprocessing methods such as denoising, segmentation and feature extraction of sinter tail section images were compared and analyzed comprehensively. Then the application situation of the image analysis technique for sintering machine tail section in the field of sinter quality prediction and control was analyzed from the aspects of FeO content in sintering ore, sintering end point, drum strength, distribution uniformity, sinter mixture moisture, etc. In addition, taking the prediction for FeO content in sintering ore as an example, the development and evolution rules of the study on sinter tail section image based on computer vision were revealed. The disadvantages of the current research and the development trend in the future were also pointed out.

关键词

关键词:烧结机尾断面 / 图像处理 / 计算机视觉 / 烧结质量 / 神经网络

Key words

Key words:sintering machine tail section / image processing / computer vision / sinter quality / neural network

引用本文

导出引用
熊大林1,张功辉2,余正伟1,陈良军1,张学锋2,龙红明1. 基于计算机视觉的烧结机尾断面图像研究进展[J]. 钢铁研究学报, 2022, 34(9): 869-883 https://doi.org/10.13228/j.boyuan.issn1001-0963.20210183
XIONG Dalin1,ZHANG Gonghui2,YU Zhengwei1,CHEN Liangjun1,ZHANG Xuefeng2,LONG Hongming1. Research progress of sinter tail sectional image based on computer vision[J]. Journal of Iron and Steel Research, 2022, 34(9): 869-883 https://doi.org/10.13228/j.boyuan.issn1001-0963.20210183

0

Accesses

0

Citation

Detail

段落导航
相关文章

/