钢水加废钢模式下Q235钢精炼渣系优化

朱俊涛, 孙振, 成日金, 朱万军, 方朝权, 张华

钢铁研究学报 ›› 2025, Vol. 37 ›› Issue (1) : 59-68.

PDF(10338 KB)
PDF(10338 KB)
钢铁研究学报 ›› 2025, Vol. 37 ›› Issue (1) : 59-68. DOI: 10.13228/j.boyuan.issn1001-0963.20240100
冶炼与加工

钢水加废钢模式下Q235钢精炼渣系优化

  • 朱俊涛1, 孙振2, 成日金1, 朱万军3, 方朝权1, 张华1
作者信息 +

Optimization of refining slag system for Q235 steel under mode of adding scrap steel into molten steel

  • ZHU Juntao1, SUN Zhen2, CHENG Rijin1, ZHU Wanjun3, FANG Chaoquan1, ZHANG Hua1
Author information +
文章历史 +

摘要

针对国内某企业多元加废钢冶炼模式下,钢液的“脱硫与回硫”现象,对精炼渣系成分进行合理优化。首先,利用热力学软件FactSage 8.1,在1 600 ℃温度条件下,对CaO-SiO2-Al2O3-5%MgO渣系与Q235钢液平衡时的等氧线进行模拟计算;同时利用精炼渣的光学碱度计算出该渣系的硫容量和硫分配比,用来评估精炼渣的脱硫性能。其次,在实验室中设计出5组精炼渣,进行高温钢渣平衡试验,对试验后精炼渣进行XRF成分检测,对钢样采取电感耦合等离子体原子发射光谱(ICP-AES)、氧氮分析仪及碳硫分析仪进行元素检测,利用场发射扫描电子显微镜分析了钢样中夹杂物的形貌和成分,并对其数量及尺寸进行统计分析。最后进行工业试验加以验证。结果表明,通过优化渣系组成,其中CaO、SiO2、Al2O3和MgO质量分数分别控制在47.7%~55.2%,0~20.5%,26.85%~55%和4%~7%范围内,能将钢液中溶解氧控制在0.001%(质量分数)以内。选取成分为54.27%CaO-7.43%SiO2-33.3%Al2O3-5%MgO的渣系,脱硫率可达54.73%,钢中TO亦可降至0.002 1%(质量分数),试验结果验证了热力学计算的准确性。

Abstract

In response to the phenomenon of “desulfurization and resulfurization” of steel during the process of adding scrap steel in a diversified smelting mode of a certain enterprise in China, the composition of refining slag was optimized reasonably. Firstly, the thermodynamic software FactSage 8.1 was used to simulate the iso-oxygen lines of CaO-SiO2-Al2O3-5%MgO slag system and Q235 steel equilibrium was simulated and calculated under the temperature condition of 1 600 ℃. Meanwhile, the sulfur capacity and sulfur distribution ratio of the slag system were calculated by using the optical basicity of the refining slag to measure the desulfurization ability of the refining slag. Secondly, high-temperature equilibrium tests on steel slag were carried out using five different designed refining slags in the laboratory. After the experiment, the composition of the refined slag was determined through XRF analysis, and the elements within the steel samples were analyzed using ICP-AES, an oxygen-nitrogen analyzer, and a carbon-sulfur analyzer. Field emission scanning electron microscopy was employed to study the structure and makeup of inclusions within the steel samples. A statistical evaluation was conducted to assess the number and dimensions of these inclusions. Finally, industrial experiments were conducted to verify the results. The results show that by optimizing the composition of the slag system, the mass fractions of CaO, SiO2, Al2O3, and MgO are controlled within the range of 47.7%-55.2%, 0-20.5%, 26.85%-55%, and 4%-7%, respectively. The mass fraction of dissolved oxygen in the steel can be controlled within 0.001%. A slag system composed of 54.27%CaO, 7.43%SiO2, 33.3%Al2O3, and 5%MgO was selected, achieving a desulfurization rate of 54.73% and reducing the total oxygen in steel to 0.002 1%. The experimental results validated the accuracy of the thermodynamic calculations.

关键词

多元加废钢 / Q235钢 / 精炼渣 / 热力学 / 硫容量

Key words

diversified addition of scrap steel / Q235 steel / refining slag / thermodynamics / sulfur capacity

引用本文

导出引用
朱俊涛, 孙振, 成日金, 朱万军, 方朝权, 张华. 钢水加废钢模式下Q235钢精炼渣系优化[J]. 钢铁研究学报, 2025, 37(1): 59-68 https://doi.org/10.13228/j.boyuan.issn1001-0963.20240100
ZHU Juntao, SUN Zhen, CHENG Rijin, ZHU Wanjun, FANG Chaoquan, ZHANG Hua. Optimization of refining slag system for Q235 steel under mode of adding scrap steel into molten steel[J]. Journal of Iron and Steel Research, 2025, 37(1): 59-68 https://doi.org/10.13228/j.boyuan.issn1001-0963.20240100
中图分类号: TF7   

参考文献

[1] 田春健,臧喜民,张利武,等.转炉高废钢比炼钢技术的发展状况与探讨[J].钢铁研究学报,2024,36(6):692.
(Tian C J,Zang X M,Zhang L W,et al.Development status and discussion on high scrap steel ratio converter steelmaking technology[J].Journal of Iron and Steel Research,2024,36(6):692.)
[2] 彭锋,李晓.“十二五”中国废钢铁行业发展现状分析与“十三五”展望[J].中国冶金,2016,26(10):29.
(Peng F,Li X.“12th Five-Year” China’s iron and steel scrap industry analysis of development status and prospect of “13th Five-Year”[J].China Metallurgy,2016,26(10):29.)
[3] 佘雪峰,刘颖超,梁栋,等.高炉添加废钢处理炉缸堆积的研究[J].炼铁,2022,41(2):57.
(She X F,Liu C Y,Liang D,et al.Study on abating dead stock retention at hearth by scrap charging[J].Ironmaking,2022,41(2):57.)
[4] 张旺胜,黄春,曾茂发,等.铁水罐加废钢受铁的生产实践[J].江西冶金,2018,38(5):22.
(Zhang W S,Huang C,Zeng M F,et al.Production practice on empty hot-metal ladle adding scrap-steel[J].Jiangxi Metallurgy,2018,38(5):22.)
[5] 刘自康,郑毅.鱼雷罐加废钢对铁水渣及铁水脱硫的影响[J].炼钢,2021,37(5):1.
(Liu Z K,Zheng Y.Effect of adding scrap into torpedo on hot metal slag and desulphurization[J].Steelmaking,2021,37(5):1.)
[6] 冯耀刚,胡亮.转炉应用增热剂提升废钢比的生产实践[J].中国冶金,2019,29(2):50.
(Feng Y G,Hu L.Production practice of increasing converter scrap ratio by using heat increasing agent[J].China Metallurgy,2019,29(2):50.)
[7] 王飞宇,邓志勇,苏艳翔.LF精炼炉加废钢工艺研究[J].炼钢,2020,36(5):27.
(Wang F Y,Deng Z Y,Su Y X.Process research on LF with steel scrap as the addition[J].Steelmaking,2020,36(5):27.)
[8] 王达志.废钢在转炉炼钢中高效利用的基础研究[D].北京:北京科技大学,2023.
(Wang D Z.Basic Research on Efficient Utilization of Scrap in Converter Steelmaking[D].Beijing:University of Science and Technology Beijing,2023.)
[9] Yang C Y,Luan Y K,Li D Z,et al.Very high cycle fatigue properties of bearing steel with different aluminum and sulfur content[J].International Journal of Fatigue,2018,116:396.
[10] Qiu G X,Zhang H Z,Gao P,et al.Research progress of desulfurization refining slag:a review[J].Steel Research International,2024,95(1):2300333.
[11] Wu L,Pei F,Chen Y,et al.Experimental study on deep desulfurizer in LF process[J].Journal of Iron and Steel Research International,2012,19(4):17.
[12] 成日金,齐詹,张华,等.20SiMn合金结构钢精炼渣系优化[J].钢铁,2023,58(1):100.
(Cheng R J,Qi Z,Zhang H,et al.Optimization of refining slag of 20SiMn alloy structural steel[J].Iron and Steel,2023,58(1):100.)
[13] 王乐,刘浏,王品.轴承钢LF精炼深脱硫工艺的研究[J].炼钢,2017,33(4):12.
(Wang L,Liu L,Wang P.The research on deep desulphurization process of bearing steel during LF refining[J].Steelmaking,2017,33(4):12.)
[14] Yu H X,Wang X H,Wang M,et al.Desulfurization ability of refining slag with medium basicity[J].International Journal of Minerals,Metallurgy and Materials,2014,21(12):1160.
[15] 曾成.钢包精炼快速脱硫及控氮工艺协同优化研究[D].武汉:武汉科技大学,2019.
(Zeng C.Collaborative Optimization of Ladle Refining Process for Rapid Desulfurization and Controlling Nitrogen Content in Molten Steel[D].Wuhan:Wuhan University of Science and Technology,2019.)
[16] 郑海燕,王硕,郭永春,等.CaO-SiO2-MgO-Al2O3渣系渣铁间硫分配比热力学模型[J].钢铁,2021,56(4):16.
(Zheng H Y,Wang S,Guo Y C,et al.Thermodynamic model for calculating sulfur distribution ratio between CaO-SiO2-MgO-Al2O3 slag and hot metal[J].Iron and Steel,2021,56(4):16.)
[17] 郭路召,赵艳宇,朱建强,等.SPHC钢LF精炼脱硫工艺实践[J].炼钢,2022,38(3):31.
(Guo L Z,Zhao Y Y,Zhu J Q,et al.Study on LF refining desulfurization process for SPHC steel[J].Steelmaking,2022,38(3):31.)
[18] Huang Y,Zeng Z Q.Improvement of desulfurization efficiency of Al-rich ladle furnace refining slag with an aqueous carbonation method by hydrothermal or ultrasound pretreatment[J].Environmental Science and Pollution Research International,2021,28(22):27703.
[19] Dong K,Wu L,Liu W J,et al.Desulfurization of CaO-Al2O3-SiO2-TiO2 slag system[J].ISIJ International,2014,54(10):2248.
[20] Hao X,Wang X H,Wang W J.Study on desulfurization ability of CaO-Al2O3-SiO2 and CaO-CaF2 slags at 1600 ℃[J].Steel Research International,2015,86(12):1455.
[21] Li S S,Kong L Z,Xu Z L.Effect of refining slag compositions on its melting property and desulphurization[J].High Temperature Materials and Processes,2023,42(1):293.
[22] 任英,张立峰.不锈钢脱硫过程的因素分析和过程优化[J].钢铁,2023,58(11):84.
(Ren Y,Zhang L F.Factor analysis and process optimization of stainless steel desulfurization process[J].Iron and Steel,2023,58(11):84.)
[23] 董文亮,罗磊,田志红,等.“全三脱”工艺流程中脱碳渣返回脱磷转炉利用[J].钢铁,2017,52(5):36.
(Dong W L,Luo L,Tian Z H,et al.Recycle of decarburization-slag in dephosphorization-furnace of duplex process in converter[J].Iron and Steel,2017,52(5):36.)
[24] 韩晶,杜滨.铁钢比变化对吨钢综合能耗影响分析方法[J].钢铁,2022,57(10):188.
(Han J,Du B.Analysis method of influence of iron steel ratio change on comprehensive energy consumption per ton of steel[J].Iron and Steel,2022,57(10):188.)
[25] 朱万军,王春锋,沈继胜,等.CSP工艺51CrV4钢精炼过程钢中夹杂物研究[J].炼钢,2017,33(4):73.
(Zhu W J,Wang C F,Shen J S,et al.Study on cleanliness and inclusions for 51CrV4 steel during refining by CSP process[J].Steelmaking,2017,33(4):73.)
[26] 苏小利,于海岐,邢维义,等.超低硫管线钢冶炼实践[J].鞍钢技术,2017(6):54.
(Su X L,Yu H Q,Xing W Y,et al.Practice of smelting ultra-low sulfur pipeline steel[J].Angang Technology,2017(6):54.)
[27] Ohta H,Suito H.Activities in MnO-SiO2-Al2O3 slags and deoxidation equilibria of Mn and Si[J].Metallurgical and Materials Transactions,1996,27B(2):263.
[28] Mo S,Zeng J,Zhang H,et al.Purifying Fe-based amorphous alloys to enhance glass-forming ability by designing a novel refining slag[J].Journal of Materials Science & Technology,2023,143:189.
[29] 刘成松,侯松威,刘晓芹,等.30Cr1Mo1V汽轮机转子钢的精炼渣优化[J].钢铁研究学报,2022,34(10):1098.
(Liu C S,Hou S W,Liu X Q,et al.Optimization of refining slag for 30Cr1Mo1V steam turbine rotor steel[J].Journal of Iron and Steel Research,2022,34(10):1098.)
[30] Kang Y B.Progress of thermodynamic modeling for sulfide dissolution in molten oxide slags:Sulfide capacity and phase diagram[J].Metallurgical and Materials Transactions,2021,52B(5):2859.
[31] 黄希祜.钢铁冶金原理(第4版)[M].北京:冶金工业出版社,2020,305.
(Huang X H.Principles of Iron and Steel Metallurgy (4th Edition)[M].Beijing:Metallurgical Industry Press,2020,305.)

基金

钢铁冶金及资源利用省部共建教育部重点实验室基金资助项目(FMRUlab202320)
PDF(10338 KB)

67

Accesses

0

Citation

Detail

段落导航
相关文章

/