DC53/42CrMo双金属复合材料的组织与性能

张赛康, 曹玉龙, 张中心, 马崇圣, 李光强

钢铁研究学报 ›› 2025, Vol. 37 ›› Issue (3) : 386-395.

PDF(30566 KB)
PDF(30566 KB)
钢铁研究学报 ›› 2025, Vol. 37 ›› Issue (3) : 386-395. DOI: 10.13228/j.boyuan.issn1001-0963.20240169
材料研究

DC53/42CrMo双金属复合材料的组织与性能

  • 张赛康1, 曹玉龙1,2, 张中心3, 马崇圣1, 李光强1,2
作者信息 +

Microstructure and properties of DC53/42CrMo bimetallic composites

  • ZHANG Saikang1, CAO Yulong1,2, ZHANG Zhongxin3, MA Chongsheng1, LI Guangqiang1,2
Author information +
文章历史 +

摘要

采用自制电渣重熔设备成功制备板状DC53/42CrMo复合铸坯,经过750 ℃退火处理后,采用OM、SEM、EBSD对其显微组织、成分、界面元素过渡进行研究,并对双金属复合界面处的力学性能进行表征。结果表明:所制备的DC53/42CrMo双金属复合铸坯无夹渣、无孔洞界面结合良好;复合界面处发生元素扩散,其中C元素由含量低的42CrMo侧向含量高的DC53侧发生上坡扩散,双金属液固复合的过程中42CrMo中C的活度远大于DC53;42CrMo侧为铁素体基体+片层状珠光体组织,42CrMo侧靠近结合界面处存在宽度约为100 μm的热影响区组织为铁素体,DC53侧存在宽度约为30 μm的元素扩散影响区,DC53侧为珠光体基体和未溶碳化物组成,复合材料的显微硬度从42CrMo向DC53呈先下降再上升趋势,42CrMo侧热影响区硬度最低,平均硬度为192.9HV;复合试样界面的平均抗拉强度为632.73 MPa,剪切强度为586.12 MPa,复合试样拉伸断裂位置位于42CrMo侧而非结合界面处,表明复合界面不是薄弱区,界面结合性能良好。探究了界面结构及性能之间的内在联系,为双金属复合刀圈的制备提供参考。

Abstract

The plate DC53/42CrMo composite casting billet was successfully prepared by electroslag remelting equipment. After annealing at 750 ℃, the microstructure, composition and interfacial element transition were studied by OM, SEM and EBSD, and the mechanical properties at the bimetal composite interface were characterized. The results show that the prepared DC53/42CrMo bimetallic composite casting billet has good bonding without slag inclusion and porosity. Element diffusion occurs at the composite interface, in which element C diffuses upslope from the 42CrMo side with low C content to the DC53 side with high C content. During the bimetallic liquid-solid recombination process, the activity of C in 42CrMo is much higher than that in DC53. On the 42CrMo side, there is a ferrite matrix + lamellar pearlite structure. On the 42CrMo side, there is a heat affected zone with a width of about 100 μm near the binding interface, and on the DC53 side, there is an element diffusion affected zone with a width of about 30 μm. The DC53 side is composed of pearlite matrix and undissolved carbide. The microhardness of the composite decreases first from 42CrMo to DC53, and then increases. The hardness of the heat-affected zone on the 42CrMo side is the lowest, with an average hardness of 192.9HV. The average tensile strength of the interface of the composite sample is 632.73 MPa and the shear strength is 586.12 MPa. The tensile fracture position of the composite sample is located at the 42CrMo side rather than the bonding interface, indicating that the bimetal interface is not a weak area and the interface bonding performance is good. The internal relationship between interface structure and properties was investigated, which provided reference for the preparation of bimetal composite cutter ring.

关键词

电渣重熔复合 / DC53/42CrMo复合材料 / 结合界面 / 元素过渡 / 组织演变

Key words

electroslag remelting composite / DC53/42CrMo composite material / binding interface / element transition / microstructure evolution

引用本文

导出引用
张赛康, 曹玉龙, 张中心, 马崇圣, 李光强. DC53/42CrMo双金属复合材料的组织与性能[J]. 钢铁研究学报, 2025, 37(3): 386-395 https://doi.org/10.13228/j.boyuan.issn1001-0963.20240169
ZHANG Saikang, CAO Yulong, ZHANG Zhongxin, MA Chongsheng, LI Guangqiang. Microstructure and properties of DC53/42CrMo bimetallic composites[J]. Journal of Iron and Steel Research, 2025, 37(3): 386-395 https://doi.org/10.13228/j.boyuan.issn1001-0963.20240169
中图分类号: TF14   

参考文献

[1] 钱七虎.建设城市地下综合管廊,转变城市发展方式[J].隧道建设,2017,37(6):647.
(QIAN Q H.To transform way of urban development by constructing underground utility tunnel[J].Tunnel Construction,2017,37(6):647.)
[2] 王好平,张蒙祺,莫继良.盾构/TBM滚刀刀圈性能强化研究现状[J].材料导报,2022,36(7):49.
(WANG H P,ZHANG M Q,MO J L.Current status on performance enhancement of shield machine/TBM cutter ring[J].Materials Reports,2022,36(7):49.)
[3] 刘晓毅.复合地层中盾构机滚刀磨损原因分析及改进[J].隧道建设,2006,26(S2):77.
(LIU X Y.Causes for wearing of disc cutters of shield machines in mixed ground and countermeasures[J].Tunnel Construction,2006,26(S2):77.)
[4] 王梦恕.中国铁路、隧道与地下空间发展概况[J].隧道建设,2010,30(4):351.
(WANG M S.An overview of development of railways,tunnels and underground works in China[J].Tunnel Construction,2010,30(4):351.)
[5] 姜川.盾构机滚刀刀圈材料的热处理优化[D].石家庄:石家庄铁道大学,2023.
(JIANG C.Heat treatment optimization of hob ring material for shield tunneling machine[D].Shijiazhuang:Shijiazhuang Tiedao University,2023.)
[6] 张忠健,谢浩,林国标,等.盾构机盘型滚刀刀圈关键材料设计与试制[J].硬质合金,2013,30(6):326.
(ZHANG Z J,XIE H,LIN G B,et al.Design and trial production of disc cutter ring for tunnel boring machine[J].Cemented Carbide,2013,30(6):326.)
[7] 孟令超.盾构机滚刀刀圈用钢的组织与性能研究[D].沈阳:东北大学,2018.
(MENG L C.Study on the microstructures and properties of the steel for disc cutter rings of TBM[D].Shenyang:Northeastern University,2018.)
[8] 贾连辉,尚勇,龙伟民,等.TBM滚刀刀圈材料合金成分对组织和耐磨性能的影响[J].中南大学学报(自然科学版),2020,51(10):2730.
(JIA L H,SHANG Y,LONG W M,et al.Effect of alloy composition of materials for TBM cutter rings on microstructure and wear resistance[J].Journal of Central South University (Science and Technology),2020,51(10):2730.)
[9] 蒋金哲,王锴,郭浩,等.新型TBM刀圈材料微观组织及耐磨性能研究[J].摩擦学学报,2021,41(1):17.
(JIANG J Z,WANG K,GUO H,et al.Microstructure and wear resistance of novel TBM cutter ring steel[J].Tribology,2021,41(1):17.)
[10] 杨明,熊计,郭智兴,等.国内外盾构机刀盘和刀具研究现状概况[J].工具技术,2013,47(4):8.
(YANG M,XIONG J,GUO Z X,et al.Research status of cutterhead and cutter in shield machine at home and abroad[J].Tool Engineering,2013,47(4):8.)
[11] 雷冬,任勇,程晓茹,等.热处理对316L/Q235复合板组织与力学性能的影响[J].钢铁,2017,52(5):66.
(LEI D,REN Y,CHENG X R,et al.Effect of heat treatment on microstructure and mechanical properties of 316L/Q235 stainless steel composite panel[J].Iron and Steel,2017,52(5):66.)
[12] 刘会云,张心金,李龙.热处理对热轧不锈钢复合板组织性能的影响[J].金属热处理,2013,38(6):67.
(LIU H Y,ZHANG X J,LI L.Effects of heat treatment on microstructure and properties of hot rolled stainless steel clad plate[J].Heat Treatment of Metals,2013,38(6):67.)
[13] KIM C K,KIM Y C,PARK J I,et al.Effects of alloying elements on microstructure,hardness,and fracture toughness of centrifugally cast high-speed steel rolls[J].Metallurgical and Materials Transactions,2005,36A(1):87.
[14] 郝素斌,刘瑞玲.复合轧辊铸造工艺及凝固模拟研究现状[J].热加工工艺,2012,41(5):62.
(HAO S B,LIU R L.Present situation of foundry technique of compound roll and solidification simulation[J].Hot Working Technology,2012,41(5):62.)
[15] 吴炳南.真空热轧316L/14Cr1MoR不锈钢复合板界面组织及力学性能研究[D].秦皇岛:燕山大学,2021.
(WU B N.Research on the interfacial structure and mechanical properties of vacuum hot rolled 316L/14Cr1MoR stainless steel clad plates[D].Qinhuangdao:Yanshan University,2021.)
[16] 曹玉龙,姜周华,董艳伍,等.电渣复合法制备双金属复合轧辊的研究进展[J].特殊钢,2020,41(5):6.
(CAO Y L,JIANG Z H,DONG Y W,et al.Research progress on the preparation of bimetallic composite roll by electroslag cladding technology[J].Special Steel,2020,41(5):6.)
[17] 李嘉维,李光强,曹玉龙,等.电渣熔焊制备不锈钢/碳钢复合板的组织与性能研究[J].武汉科技大学学报,2023,46(5):330.
(LI J W,LI G Q,CAO Y L,et al.Structure and properties of stainless steel/carbon steel clad plates prepared by electroslag fusion welding[J].Journal of Wuhan University of Science and Technology,2023,46(5):330.)
[18] IBRAHIM M M,EL-HADAD S,MOURAD M.Effect of liquid-solid volume ratios on the interfacial microstructure and mechanical properties of high chromium cast iron and low carbon steel bimetal[J].Materials Research Express,2019,6(12):1265c2.
[19] 曹玉龙.电渣重熔法制备双金属复合轧辊研究[D].沈阳:东北大学,2018.
(CAO Y L.Research on the bimetallic composite roll produced by the electroslag cladding method[D].Shenyang:Northeastern University,2018.)
[20] 金贺荣,张钊瑞,韩民峰,等.表面粗糙度对热轧不锈钢复合板界面质量的影响[J].材料导报,2021,35(8):8151.
(JIN H R,ZHANG Z R,HAN M F,et al.Effect of surface roughness on interface quality of hot rolled stainless steel clad plate[J].Materials Reports,2021,35(8):8151.)
[21] 崔忠圻,覃耀春.金属学与热处理[M].2版.北京:机械工业出版社,2007.
(CUI Z Q,QIN Y C.Metallurgy and heat treatment[M].Beijing:China Machine Press,2009.)
[22] 刘宝龙,张慧芳,肖振兴,等.316L/Q345R热轧复合板界面组织演变及性能[J].钢铁,2017,52(5):72.
(LIU B L,ZHANG H F,XIAO Z X,et al.Microstructure evolution and properties of interface in 316L/Q345R hot rolled clad plate[J].Iron and Steel,2017,52(5):72.)
[23] KIM H,KANG J Y,SON D,et al.Evolution of carbides in cold-work tool steels[J].Materials Characterization,2015,107:376.
[24] 李万明,姜周华,董艳伍,等.复合轧辊界面理论研究的现状[J].材料与冶金学报,2011,10(S1):77.
(LI W M,JIANG Z H,DONG Y W,et al.Present situation of research on interface of compound roll[J].Journal of Materials and Metallurgy,2011,10(S1):77.)
[25] HOU Z W,DONG Y W,JIANG Z H,et al.Interface bonding mechanism and heat treatment of the composite roll manufactured by electroslag remelting cladding method[J].Journal of Materials Research and Technology,2022,19:4115.
[26] 张平,张元好,常庆明.高强铜/钢双金属复合导板的界面结合机制[J].特种铸造及有色合金,2012,32(8):768.
(ZHANG P,ZHANG Y H,CHANG Q M.Bonding mechanism of the high strength copper/steel bimetal interface of composite guide plate[J].Special Casting & Nonferrous Alloys,2012,32(8):768.)
[27] CAO Y L,DONG Y W,JIANG Z H,et al.Characteristics of high speed steel/ductile cast iron composite roll manufactured by electroslag remelting cladding[J].ISIJ International,2021,61(7):2127.
[28] CAO Y L,MA C S,JIANG Z H,et al.Element migration and diffusion at the bonding interface of the bimetallic composite billet produced by the ESRC method[J].Metallurgical and Materials Transactions,2022,53B(4):2398.
[29] 王光磊,党军,翟冬雨,等.真空热轧Q345B碳钢-304不锈钢复合板界面Cr、Ni扩散行为研究[J].特殊钢,2022,43(2):27.
(WANG G L,DANG J,ZHAI D Y,et al.Research on diffusion behavior of Cr and Ni at interface of vacuum hot-rolled Q345B carbon steel-304 stainless steel clad plate[J].Special Steel,2022,43(2):27.)
[30] 陈伯蠡.金属焊接性基础[M].北京:机械工业出版社,1982.
(CHEN B L.Metal weldability basis[M].Beijing:China Machine Press,1982.)
[31] SUEHIRO M,HASHIMOTO Y.Carbon distribution near interface between base and cladding steels in austenite stainless clad steel sheet[J].Tetsu-to-Hagane,1989,75(9):1501.
[32] 蒋君.真空热轧复合不锈钢复合板的组织性能研究[D].沈阳:东北大学,2014.
(JIANG J.Microstructure and mechanical property of stainless steel clad plate made by vacuum hot roll-cladding[D].Shenyang:Northeastern University,2014.)
[33] 李德元,娄建新,王晓宇,等.不锈钢与耐热钢焊接过渡区的碳迁移现象分析[J].沈阳工业大学学报,2012,34(5):491.
(LI D Y,LOU J X,WANG X Y,et al.Analysis on migration phenomena of carbon in welding transition region between stainless steel and heat-resistant steel[J].Journal of Shenyang University of Technology,2012,34(5):491.)
[34] 王皓.电渣堆焊高铬铸铁硬面层工艺及组织与性能研究[D].武汉:华中科技大学,2018.
(WANG H.Study on electroslag surfacing process and microstructure properties of high chromium cast iron hardfacing layers[D].Wuhan:Huazhong University of Science and Technology,2018.)
[35] 邵春娟,镇凡,陆春洁,等.热轧S31603/Q370q不锈钢复合板界面特征分析[J].钢铁研究学报,2022,34(2):181.
(SHAO C J,ZHEN F,LU C J,et al.Analysis on interface characteristics of hot-rolled S31603/Q370q stainless clad steel plate[J].Journal of Iron and Steel Research,2022,34(2):181.)
[36] 李晶.特殊钢中碳化物控制[M].北京:冶金工业出版社,2019.
(LI J.Carbide in special steels:formation mechanism and control technology[M].Beijing:Metallurgical Industry Press,2019.)

基金

湖北省自然科学基金资助项目(2023AFB654);湖北省中央引导地方科技发展专项资助项目(2023EGA008)
PDF(30566 KB)

61

Accesses

0

Citation

Detail

段落导航
相关文章

/