超高料层烧结是钢铁行业减碳的重要措施,但随着料层高度增加,产品质量严重不均,对高炉冶炼产生不利影响。通过对10余台料高不小于900mm的烧结机台车取样分析发现,烧结矿质量不均主要体现在台车纵向、横向及台车间,其根本原因在于台车上混合料粒度、成分和热量的不合理,无法实现均质成矿。针对以上问题,研究构建了均质烧结理想料层结构,开发出基于液相成分调控的优化配矿技术、强化混匀制粒技术、混合料仓-台车协同布料技术、风量重构烧结技术等,通过优化烧结液相成分范围,调控料层液相生成与热量相匹配,提高热量与风量的利用效率,实现均质成矿。系列技术实施后,烧结固体燃耗降低1.2~7.9kg/t;烧结矿转鼓强度提高3%~6%、极差减少至5.08%;烧结矿冶金性能改善,RDI+3.15mm提高10%、RDI-0.5mm极差减小至1.99%;高炉利用系数提高,每吨铁燃料比最高降低6.58kg/t。
Abstract
Super-high bed sintering is an important route to reduce carbon emissions in the steel industry. However, as the sintering bed depth increases in practice, the severe inhomogeneity of sinter products adversely affects the blast furnace production. Joint analysis of mixture and sinter was carried out on more than 10 industrial sintering machines in China with bed depth of not less than 900 mm. It is revealed that the inhomogeneous quality of sinter products mainly manifested in the longitudinal direction, transverse direction, and between the strands. The root reason is that the uneven liquid phase composition and heat caused by unreasonable distribution of mixture particle size, chemical composition, and air cannot satisfy the requirements of liquid phase homogeneous mineralization. To address the above problems, an ideal bed structure matching the liquid phase and heat was developed. Besides, the optimized ore blending technology for liquid phase composition regulation, the enhanced mixing and granulation technology, synergistic feeding technology, and air reorganization sintering technology were developed to achieve this bed structure. By optimizing the chemical composition of liquid phase, regulating the distribution of liquid phase within the sintering bed, and matching the heat with the liquid phase quantity, the efficiency of heat and suction was improved, and homogeneous mineralization was achieved. After the implementation of those technologies, the solid fuel consumption was reduced by 1.2-7.9 kg/t, the tumble index increased by 3%-6%, and the difference of tumble index within the sintering bed was reduced to 5.08%. Furthermore, the metallurgical performance of the sinter improved, with the reduction disintegration index RDI+3.15 mm increasing by 10% and the difference of RDI-0.5 mm decreasing to 1.99%. The productivity of the blast furnace improved, and the solid fuel consumption was reduced by 6.58 kg/t at the highest.
关键词
低碳炼铁 /
超高料层烧结 /
均质成矿 /
优化配矿 /
料层结构
{{custom_keyword}} /
Key words
low carbon ironmaking /
super-high bed sintering /
homogeneous mineralization /
optimized ore blending /
bed structure
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DASTIDAR M G,BHATTACHARYYA A,SARKAR B K,et al.The effect of alkali on the reaction kinetics and strength of blast furnace coke[J].Fuel,2020,268:1.
[2] LUO J,HOU S Y,RAO M J,et al.Enhanced chromium recovery in the smelting of ferronickel along with energy-saving:an industrial case study[J].JOM,2022,74(1):178.
[3] ROQUE E,VICENTE R,ALMEIDA R M S F.Opportunities of light steel framing towards thermal comfort in southern European climates:Long-term monitoring and comparison with the heavyweight construction[J].Building and Environment,2021,200(8):1.
[4] 王新江.中国电炉炼钢的技术进步[J].钢铁,2019,54(8):1.
(WANG X J.Technological progress of EAF steelmaking in China[J].Iron and Steel,2019,54(8):1
[5] 王广,张宏强,苏步新,等.我国钢铁工业碳排放现状与降碳展望[J].化工矿物与加工,2021,50(12):1.
(WANG G,ZHANG H Q,SU B X,et al.The current situation of carbon emission and carbon reduction in Chinese steel industry[J].Industrial Minerals & Processing,2021,50(12):1.)
[6] YANG L Z,HU H,YANG S,et al.Life cycle carbon footprint of electric arc furnace steelmaking processes under different smelting modes in China[J].Sustainable Materials and Technologies,2023,35:e00564.
[7] 张琦,沈佳林,许立松.中国钢铁工业碳达峰及低碳转型路径[J].钢铁,2021,56(10):152.
(ZHANG Q,SHEN J L,XU L S.Carbon peak and low-carbon transition path of China's iron and steel industry[J].Iron and Steel,2021,56(10):152.)
[8] WANG Y,ZUO H,ZHAO J.Recent progress and development of ironmaking in China as of 2019:An overview[J].Ironmaking & Steelmaking,2020,47(6):640.
[9] 张福明,徐萌.首钢绿色低碳炼铁技术发展[J].炼铁,2022,41(6):16.
(ZHANG F M,XU M.Development of green and low-carbon ironmaking technology at Shougang[J].Ironmaking,2022,41(6):16.)
[10] 臧疆文.“双碳”背景下烧结工序温室气体减排研究[C]//第十三届中国钢铁年会论文集.重庆:2022.
(ZANG J W.Study on greenhouse gas emission reduction in sintering process under dual carbon background[C]//Proceedings of the 13th CSM Steel Congress.Chongqing:2022.)
[11] 姜涛,李光辉,许斌,等.烧结生产进一步提质节能的途径-均热高料层烧结[C]//第十届中国钢铁年会暨第六届宝钢学术年会论文集III,中国上海:2015.
(JIANG T,LI G H,XU B,et al.An approach of quality-improving and energy-saving for sintering process:Heat-homogenizing and deep-bed sintering[C]//Proceedings of the 10th CSM Steel Congress & the 6th Baosteel Biennial Academic Conference.Shanghai:2015.)
[12] MÜNIVE L.The effects of bed depth,basicity and suction on sintering technology[D].New South Wales:University of Wollongong,1992.
[13] CHOI Eungsoo,周取定.高料层烧结节能的研究[C]//2001中国钢铁年会论文集,北京:2001.
(CHOI E,ZHOU Q D.Study of energy saving in high layer sintering[C]//2001 CSM Annual Meeting Proceedings.Beijing:2001.)
[14] 黄天正.高料层烧结的探讨[J].烧结球团,1980(1):6.
(HUANG T Z.Discussion of high bed sintering[J].Sintering and Pelletizing,1980(1):6.)
[15] 陈仕红.厚料层烧结与能耗的关系[J].四川冶金,1999(2):40.
(CHEN S H.Relationship between sintering of thick bed and energy consumption[J].Sichuan Metallurgy,1999(2):40.)
[16] 姜涛,李光辉,胡友明,等.铁矿粉复合造块工艺:CN200510032095.6[P].2007-03-07[2024-05-13].
(JIANG T,LI G H,HU Y M,et al.Composite agglomeration process for iron ores:CN200510032095.6[P].2007-03-07[2024-05-13].)
[17] 熊林.铁矿超高料层烧结的料层结构优化研究与应用[D].长沙:中南大学,2022.
(XIONG L.Research and application on optimization of bed structure in sintering of ultra-high bed of iron ore[D].Changsha:Central South University,2022.)
[18] 许斌.铁矿石均热烧结基础与技术研究[D].长沙:中南大学,2012.
(XU B.Research on fundamental and technology of heat-homogenizing sintering of iron ores[D].Changsha:Central South University,2012.)
[19] 裴元东,史凤奎,安钢,等.京唐550 m2烧结机台车上物料和烧结矿分区研究(Ⅰ)[J].烧结球团,2013,38(1):9.
(PEI Y D,SHI F K,AN G,et al.Regional study on material and sinter on pallet car of Jingtang 550 m2 sinter machine (part 1)[J].Sintering and Pelletizing,2013,38(1):9.)
[20] 裴元东,史凤奎,安钢,等.京唐550 m2烧结机台车上物料和烧结矿分区研究(Ⅱ)[J].烧结球团,2013,38(2):14.
(PEI Y D,SHI F K,AN G,et al.Regional study on material and sinter on pallet car of Jingtang 550 m2 sinter machine (part 2)[J].Sintering and Pelletizing,2013,38(2):14.)
[21] 龙红明,左俊,王平,等.厚料层烧结高度方向均质性研究[J].烧结球团,2013,38(4):1.
(LONG H M,ZUO J,WANG P,et al.Study on homogeneity of thick layer sintering process in height direction[J].Sintering and Pelletizing,2013,38(4):1.)
[22] 程峥明,宁文欣,潘文,等.超厚料层均质烧结技术的研究与应用[J].烧结球团,2019,44(4):7.
(CHENG Z M,NING W X,PAN W,et al.Research and application of ultra-deep bed homogeneous sintering technology[J].Sintering and Pelletizing,2019,44(4):7.)
[23] 王建鹏,相里军红,李文雅,等.汉钢265 m2烧结机1 000 mm料层均质烧结技术进步[J].山西冶金,2021,44(5):193.
(WANG J P,XIANGLI J H,LI W Y,et al.Progress of homogeneous sintering technology of 1 000 mm material layer in 265 m2 sintering machine of Hansteel[J].Shanxi Metallurgy,2021,44(5):193.)
[24] 韦胜利.陕钢汉钢超厚料层均质烧结技术工业实践[J].山西冶金,2020,43(3):116.
(WEI S L.Industrial practice of homogeneous sintering technology of super thick material layer in Shaanxi Steel HanSteel[J].Shanxi Metallurgy,2020,43(3):116.)
[25] XU L P,LIU H B,ZHAO Y C,et al.Super-high bed sintering for iron ores:Problems ascertainment[J].Journal of Iron and Steel Research International,2024,31(5):1063.
[26] XU L P,LIU H B,DONG Z L,et al.Super-high bed sintering for iron ores:Behaviors,causes and solutions of horizontal segregation on strand[J].Journal of Iron and Steel Research International,2024,31(7):1590.
[27] LIU H B,XU L P,YANG X D,et al.Super-high bed sintering for iron ores:Inhomogeneous phenomena and its mechanism during mineralizing[J].Journal of Iron and Steel Research International,2024,31(8):1850.
[28] LI G H,LIU C,YU Z W,et al.Energy saving of composite agglomeration process (CAP)by optimized distribution of pelletized feed[J].Energies,2018,11(9):1.
[29] XU L P,WU J T,ZHONG Q,et al.Novel mode for mineralization and its sintering performance of vanadiferous titanomagnetites[J].Journal of Central South University,2023,30(9):2934.
[30] 周明顺,田勇,赵东明,等.铁矿烧结系统漏风制粒技术及评估综述[J].中国冶金,2024,34(1):1.
(ZHOU M S,TIAN Y,ZHAO D M,et al.Summary of air leakage control technology and evaluation for iron ore sintering system[J].China Metallurgy,2024,34(1):1.)
[31] KIM K M,BAE J H,PARK J I,et al.Segregation charging behavior of ultra-fine iron ore briquette in sinter feed bed:DEM analysis[J].Metals and Materials International,2020,26(8):1218.
[32] 叶恒棣,周浩宇,王业峰,等.分层供热富氢烧结关键技术探索与研究[J].钢铁,2021,56(12):134.
(YE H D,ZHOU H Y,WANG Y F,et al.Exploration and research on key technologies of multi-layer heat supplying and H2-rich sintering[J].Iron and Steel,2021,56(12):134.)
[33] 赵加佩.铁矿石烧结过程的数值模拟与试验验证[D].杭州:浙江大学,2012.
(ZHAO J P.Numerical modelling of the iron ore sintering process and its experimental validation[D].Hangzhou:Zhejiang University,2012)
[34] 中南大学.一种铁矿石超高料层均质烧结方法:202311202143.6[P/OL].2023-12-12[2024-06-29].
(Central South University.Super-high bed homogeneous sintering for iron ores:202311202143.6[P/OL].2023-12-12[2024-06-29].)
[35] XU L P,LIU H B,YANG X D,et al.A case study of sintering with low silica iron ore[C]//Materials Engineering—From Ideas to Practice:An EPD Symposium in Honor of Jiann-Yang Hwang.Cham:Springer International Publishing,2021:149.
[36] JIANG T,XU L P,ZHONG Q,et al.Efficient preparation of blast furnace burdens from titanomagnetite concentrate by composite agglomeration process[J].JOM,2021,73(1):326.
[37] XU L P,XIONG L,LIU H B,et al.Super-high bed sintering for iron ores:Variation and optimization of bed resistance[J].Journal of Iron and Steel Research International,2025,32(1):40.
[38] XIONG L,PENG Z W,GU F Q,et al.Combustion behavior of granulated coke breeze in iron ore sintering[J].Powder Technology,2018,340:131.
[39] 许斌,常亮亮,姜涛,等.合理垂直烧结速度的研究[J].中南大学学报(自然科学版),2007,38(2):245.
(XU B,CHANG L L,JIANG T,et al.Research of rational vertical sintering speed[J].Journal of Central South University (Science and Technology),2007,38(2):245.)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(52274290);河北省科技计划资助项目(23564101D)
{{custom_fund}}