对无抑制剂取向硅钢不同压下率下初次再结晶退火后的显微组织、宏观织构和微观织构进行了研究。结果表明,冷轧板织构主要为α取向线{001}<110>、{112}<110>和{111}<110>织构以及γ取向线{111}<110>织构。初次再结晶退火后,α取向线织构减弱,织构主要为γ取向线{111}<112>织构。随冷轧压下率的增加,冷轧和初次再结晶织构强度增加。当压下率为88%时,初次再结晶退火后Goss织构和{111}<112>织构强度最高,最有利于发生二次再结晶。EBSD分析显示,Goss取向晶粒大多与{111}<112>取向晶粒相邻。提高冷轧压下率,Goss取向晶粒和{111}<112>取向晶粒都增加,Goss取向晶粒偏离理想取向角度减少。
Abstract
The microstructures, macrotextures and microtextures of grainoriented silicon steel without inhibitor with three different reductions of cold rolling (88%, 85% and 82%) were studied. The results indicate that the main textures are α fiber textures ({001}<110>, {112}<110> and {111}<110> texture) and γ fiber {111}<110> texture after coldrolling. Then α textures decrease dramatically while {111}<112> texture is strengthened after primary recrystallization annealing. The intensities of coldrolled textures and primary recrystallization textures increase with the increase of reduction of cold rolling. Under the reduction of cold rolling of 88%, the intensities of textures of Goss and {111}<112> are the highest after primary recrystallization annealing, which is benefit for secondary recrystallization. The orientation maps indicate that Goss grains mainly nucleate around {111}<112>orientation grains. With the increase of reduction of cold rolling, both Goss and {111}<112> oriented grains increase and the deviation from ideal Goss orientation of Goss grains decreases.
关键词
无抑制剂取向硅钢 /
冷轧 /
初次再结晶退火 /
织构 /
EBSD
{{custom_keyword}} /
Key words
oriented silicon steel without inhibitors /
cold rolling reduction /
primary recrystallization annealing /
texture /
EBSD
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何忠治, 赵宇, 罗海文.电工钢[M]. 北京:冶金工业出版社,2012.
[2] 朱文英, 孙焕德,.取向硅钢冷轧工艺的进展[J].上海金属, 2002, 24(4):10-13
[3] 毛卫民, 王开平.冷轧钢板变形织构的理论模拟[J].北京科技大学学报, 1993, 15(5):497-502
[4] 毛卫民.冷轧钢板变形织构的定量分析[J].北京科技大学学报, 1993, 15(4):369-374
[5] 吕科, 李军, 赵宇, 等.常化温度对无抑制剂取向硅钢性能影响[J].材料热处理学报, 2015, 36(4):162-167
[6] Hayakawa Y.Grain-Oriented Magnetic Steel Sheet Having No Undercoat Film Comprising Forsterite as Primary Component and Having Good Magnetic Characteristics[P]. US Patent: 2005-6942740B2.
[7] Hayakawa Y.Method of Making Grain-Oriented Magnetic Steel Sheet Having Low Iron Loss[P]. US Patent: 2007-RE39482E.
[8] Hayakawa Y.Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics[P]. US Patent: 2008-7371291B2.
[9]Mishar S, Darmann C, Lucke K.On the development of the Goss texture in iron-3% silicon[J].ActaMetall, 1984, 32(12):2185-2201
[10] 毛卫民, 杨平.电工钢的材料学原理[M]. 北京: 高等教育出版社, 2013.
[11] Samet-Meziou A, Etter A L, Baudin T, et al.TEM study of recovery and recrystallization mechanisms after 40% cold rolling in an IF-Ti steel[J].Scripta Materialia, 2005, 53(8):1001-1006
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}