热加工参数对GH738合金动态再结晶行为的影响

刘辉 蔡新宇

钢铁研究学报 ›› 2014, Vol. 26 ›› Issue (3) : 46-50.

钢铁研究学报 ›› 2014, Vol. 26 ›› Issue (3) : 46-50.
材料研究

热加工参数对GH738合金动态再结晶行为的影响

  • 刘辉,蔡新宇
作者信息 +

Effects of Hot Working Parameters on Dynamic Recrystallization Behaviors of GH738 Alloy

  • LIU Hui,CAI Xin-yu
Author information +
文章历史 +

摘要

采用Gleeble-1500D热加工模拟试验机及微观组织分析系统研究了热加工参数对GH738合金动态再结晶组织分布的影响规律。结果表明:影响GH738合金动态再结晶晶粒分布均匀性的主要因素是变形量,当变形量大于50%且接近70%时更易获得较均匀的再结晶组织。变形速度及温度对动态再结晶也有一定的影响:变形速率减小,变形温度升高,再结晶体积分数提高;变形速率增大,变形温度降低都导致再结晶晶粒的体积分数减小。进一步的电镜分析表明,GH738合金动态再结晶的形核机制以应变诱发形核为主。

Abstract

The effects of hot working parameters on dynamic recrystallization behaviors of GH738 alloy were investigated by using Gleeble-1500D thermomechanical simulator and microstructure analysis. The results show that the main factor that affects dynamical recrystallization of this alloy is hot reduction rate. With the increasing of this parameter, the recrystallization fractions under all tested conditions are increased, inducing the dynamic recrystallization nucleation mechanism for GH738 alloy was strain-induced nucleation. During engineering practice, in order to obtain the uniform grain size distribution, the higher deformation temperature and the greater reduction rate (greater than 50% and near 70%) should be adopted.

关键词

GH738合金 / 动态再结晶行为 / 晶粒分布

Key words

GH738 alloy / dynamic recrystallization behaviors / grain size distribution

引用本文

导出引用
刘辉 蔡新宇. 热加工参数对GH738合金动态再结晶行为的影响[J]. 钢铁研究学报, 2014, 26(3): 46-50
LIU Hui,CAI Xin-yu. Effects of Hot Working Parameters on Dynamic Recrystallization Behaviors of GH738 Alloy[J]. Journal of Iron and Steel Research, 2014, 26(3): 46-50

参考文献

[1] Simmons J P, Wen Y, Shen C. Microstructural development involving nucleation and growth phenomena simulated with the Phase Field method. Mater Science Engineering A, 2004, 365A(1-2): 136~145
[2] Livesey D W, Sellars C M. Hot-deformation characteristics of GH738. Materials Science and Technology, 1985, 1(2): 136~144
[3] Cotterill P, Mould P R. Recrystallization and grain growth in metals. London : International Textbook Co., Ltd., 1976: 341~342
[4] Luton M J, Sellars C M. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. Ac-taMetallurgica, 1969, 17(8): 1033~1043
[5] Glover G, Sellars C M. Recovery and recrystallization during high temperature deformation of α-iron. Metallurgical Transac-tions A, 1973,4(3): 765~775
[6] Sah J P, Richardson G J, Sellars C M. Quantititative correlation between high temperature strength and kinetics of dynamic re-crystallization. Indian Journal of Technology, 1973, 11(10) : 445~452
[7] Sah J P, Richardson G J, Sellars C M. Grain-size effects during dynamic recrystallization of nickel. Metal Science, 1974, 8(10): 325~331
[8] McQueen H J, Jonas J J, Recovery and recrystallization during high temperature deformation. Plastica, 1975: 393~493
[9] Sellars C M. Recrystallization of metals during hot deformation. Philosophical Transactions of the Royal Society of London A, 1978, 288(1350): 147~58
[10] Roberts W, Boden H, Ahlblom B. Dynamic recrystallization kinetics. Metal Science, 1979, 13(3-4) : 195~205
[11] Blaz L, Sakai T, Jonas J J. Effect of initial grain size on dynamic recrystallization of copper. Metal Science, 1983, 17(12): 609~616
[12] McQueen H J, Bergerson S. Dynamic recrystallization of copper during hot torsion. Metal Science Journal, 1972, 6 : 25~29

63

Accesses

0

Citation

Detail

段落导航
相关文章

/