采用煤基还原熔分技术研究了熔分温度、熔分时间、氟化钙配比,煤粉配比对铜渣熔分后铁、铜回收率的影响,并运用XRD及SEM等分析手段对熔分产物进行了详细的研究。结果表明,在1380~1450℃之间进行熔分,通过对铁、铜的综合收得率计算,熔分温度应该控制在1430℃,在此基础上确定最佳熔分时间为20min,此时金属铜的回收率达到最高,为90%左右。配入一定比例的煤粉和氟化钙均能提高铁的回收率,尤其以添加氟化钙的效果最好,适宜的添加比例不应超过2%(质量分数)。对分离后的渣铁分别进行表征分析,表明粒铁中的主要组织为铁素体和浮氏体,炉渣主要呈非晶态,其中夹杂有尚未凝聚的铁晶粒。最后,在最优条件下进行了转底炉半工业试验。
Abstract
Effects of the temperature, time, the calcium fluoride ratio and coke ratio on the recovery percent of nuggets and Cu were investigated by coal-based direct reduction process, and the melting products were analyzed by XRD and SEM. The results showed that the reduction temperature should be 1430℃ when processed in the temperature range of 1380-1450℃, according to the calculation results of the recovery percent of iron and copper. The optimal reduction time was 20 min and the nuggets recovery percent is the highest, which was about 90%. Proper additions of pulverized coal and calcium fluoride could promote the recovery rate of nuggets, especially the latter, but the addition ratio should be no more than 2 mass%. The nuggets was mainly composed of ferrite and wustite and the slag was in amorphous state, composed of iron crystal grains which were not agglomerated. Finally, under the optimal conditions,rotary hearth furnace semi-industrial test was conducted.
关键词
水淬铜渣 /
高温熔分 /
收得率 /
渣相组成 /
转底炉
{{custom_keyword}} /
Key words
granulated copper slag /
high temperature melting /
recovery rate /
slag composition /
RHF
{{custom_keyword}} /
中图分类号:
TF09
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴礼杰. 转炉渣中有价金属的选别[J]. 矿业研究与开发,2001,21(4):29-32.
[2] 魏明安. 铜转炉渣选矿回收技术研究[J]. 矿冶, 2004,13(1): 38-41.
[3] SARRAFI A, RAHMATI B, HASSANI H R, SHIRAZI H H A. Recovery of copper from reverberatory furnace slag by flotation[J]. Minerals Engineering, 2004, 17(3): 457?459
[4] 陈江安,龚恩民,李晓波等[J].江西贵溪铜冶炼厂转炉渣选矿工艺研究,2010,3(31):19-21.
[5] 曹洪杨,张力,付念新等.国内外铜渣的贫化[J].材料与冶金学报,2009(1):33-39.
[6] 杜清枝,段一新,黄志家等.炼铜炉渣贫化的新方法及机理[J].有色金属(冶炼部分),1995(3):17-19.
[7] 杜清枝.炉渣真空贫化的物理化学[J].昆明理工大学学报,1995,20(2):107-110.
[8] Reddy R G, Prabhu V L, Mantha D. Recovery of copper from copper blast furnace slag[J]. Minerals & Metallurgical Processing,2006,23(2):97-103.
[9] 李磊,胡建航,王华.铜渣熔融还原炼铁过程研究[J]. 过程工程学报,2011,11(1): 65-71.
[10] Banza A N,Cock E,Kongolo K.Base metals recovery from copper smelter slag by oxidizing leaching and solvent extraction[J].Hydrometallurgy,2002,67(1-3):63-69.
[11] Altundogan H S,Tumen F.Metal recovery from copper converter slag by roasting with ferric sulphate[J].Hydrometallurgy,1997,44(1-2):261-267.
[12] Rudnik E,Burzynska L,Gumowska W.Hydrometallurgical recovery of copper and cobalt from reduction—roasted copper converter slag[J].Mineral Engineering,2009,22(1):88-95.
[13] CARRANZA F, ROMERO R, MAZUELOS A, IGLESIAS N, FORCAT O. Biorecovery of copper from converter slag: Slag characterization and exploratory ferric leaching tests[J].Hydrometallurgy, 2009, 97(1/2): 39-45.
[14] SHI C J, MEYER C, BEHNOOD A. Utilization of copper slag in cement and concrete [J]. Resources, Conservation and Recycling, 2008, 52(10): 1115-1120.
[15] KHANZADI M, BEHNOOD A. Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate [J]. Construction and Building Materials, 2009, 23(6): 2183-2188.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}