Microstructure, mechanical properties and strengthening mechanisms of Ti microalloyed high strength hot strip steel

YANG Geng-wei,MAO Xin-ping,,ZHAO Gang,GAN Xiao-long,,DA Chuan-li,HE Xian-ling

Journal of Iron and Steel Research ›› 2016, Vol. 28 ›› Issue (12) : 75-79.

Journal of Iron and Steel Research ›› 2016, Vol. 28 ›› Issue (12) : 75-79. DOI: 10.13228/j.boyuan.issn1001-0963.20160266

Microstructure, mechanical properties and strengthening mechanisms of Ti microalloyed high strength hot strip steel

  • YANG Geng-wei1,MAO Xin-ping1,2,ZHAO Gang1,GAN Xiao-long1,2,DA Chuan-li1,HE Xian-ling1
Author information +
History +

Abstract

The continuous cooling transformation behavior, the effect of coiling temperature on microstructure and mechanical properties, and strengthening mechanisms of Ti microalloyed high strength hot strip steel were systematically investigated by thermal simulation testing machine, laboratory rolling mill, SEM and HR-TEM. The dynamic CCT curve was established. The results show that the austenite to ferrite and pearlite transformation takes place when the cooling rate is less than 1℃/s. The austenite to bainite transformation accompanied with austenite to ferrite and pearlite transformation takes place when the cooling rate is in the range of 5 ℃/s to 10 ℃/s. The bainitic transformation temperature is about 600℃. The amount of granular bainite decreases, while the amount of lath bainite increases with the increase of cooling rate in the range of 20℃/s to 50℃/s. Furthermore, the study on the effect of coiling temperature on the microstructure and mechanical properties of experimental steel has shown that the strength and plasticity of tested steel are improved with decreasing the coiling temperature. When the coiling temperature is 550℃,the experimental steel possesses optimal mechanical properties owing to the grain refinement and precipitation of nano-scale TiC particles. And the tensile strength, yield strength and elongation of tested steel were 742MPa, 683MPa and 225%, respectively.

Key words

Ti microalloyed / high strength steel / dynamic CCT curve / mechanical properties / strengthening mechanisms

Cite this article

Download Citations
YANG Geng-wei,MAO Xin-ping,,ZHAO Gang,GAN Xiao-long,,DA Chuan-li,HE Xian-ling. Microstructure, mechanical properties and strengthening mechanisms of Ti microalloyed high strength hot strip steel[J]. Journal of Iron and Steel Research, 2016, 28(12): 75-79 https://doi.org/10.13228/j.boyuan.issn1001-0963.20160266

References

[1] 雍岐龙, 马鸣图, 吴宝榕.微合金钢物理和力学冶金[M]. 北京: 机械工业出版社, 1989.
[2] 齐俊杰, 黄运华, 张跃. 微合金化钢 [M]. 北京: 冶金工业出版社, 2006.
[3] 毛新平. 薄板坯连铸连轧微合金化技术 [M]. 北京: 冶金工业出版社, 2008.
[4] DeArdo A J, Gray J M, Meyer L. Fundamental Metallurgy of Niobium in Steel [C]. Stuart H (Ed.), Proc. Int. Symp. on Niobium, Metallurgical Society of AIME, PA(1981), 685-759.
[5] Lagneborg R, Siwecki T, Zajac S, Hutchinson B, The role of vanadium on microalloyed steels [J]. Scand. J. Metall., 1999, 186-241.
[6] 毛新平, 孙新军, 康永林, 林振源. 薄板坯连铸连轧Ti微合金化钢的物理冶金学特征[J]. 金属学报, 2006, 42(10): 1091-1095.
[7] Mao X P, Huo X D, Sun X J, Chai Y Z. Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production [J]. Journal of Materials Processing Technology, 2010, 210: 1660-1666.
[8] 马玉喜, 段小林, 刘静, 郭斌, 陶军晖, 杜明. 800 MPa级含Ti高强钢铸坯断裂的原因[J]. 钢铁研究学报, 2016, 28(02): 51-56.
[9] Seto K, Funakawa Y, Kaneko S. Hot rolled high strength steels for suspension and chassis parts “NANOHITEN” and “BHT@Steel” [J]. JFE Technical Report, 2007, 10:19-25.
[10]朱正海, 肖丽俊, 彭世恒, 王强, 干勇. 连铸过程铌钛微合金钢中第二相复合析出模型[J]. 钢铁研究学报, 2014, 26(7): 18-22.
[11] 陈俊, 吕梦阳, 唐帅, 刘振宇, 王国栋. V-Ti微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014, 50(5): 524-530.
[12] 李小琳, 王昭东, 邓想涛, 张雨佳, 类承帅, 王国栋. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响[J]. 金属学报, 2015, 51(7): 784-790.
[13] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.
[14] Ashby M F. Strengthening Methods in Crystals [M]. London: Applied Science Publishers Ltd., 1971: 137.

Accesses

Citation

Detail

Sections
Recommended

/