Influence of power supply parameters on heating efficiency of blocking layer in electromagnetic induction-controlled steel teeming system

LI Yang, HE Ming, MU Wangzhong, ZHAO Lijia, TIAN Chen, WANG Qiang

Journal of Iron and Steel Research ›› 2024, Vol. 36 ›› Issue (12) : 1530-1544.

PDF(31788 KB)
PDF(31788 KB)
Journal of Iron and Steel Research ›› 2024, Vol. 36 ›› Issue (12) : 1530-1544. DOI: 10.13228/j.boyuan.issn1001-0963.20240109
Smelting and Working

Influence of power supply parameters on heating efficiency of blocking layer in electromagnetic induction-controlled steel teeming system

  • LI Yang1,2, HE Ming1,3, MU Wangzhong1,4, ZHAO Lijia1, TIAN Chen1, WANG Qiang1
Author information +
History +

Abstract

Control of non-metallic inclusion is the core issue in the quality control process for producing high-quality steel products. During the continuous casting process, ladle filler sand is used to isolate the liquid steel and the slide plate, serving the functions of automatic teeming and protecting the slide plate. However, it also introduces a large amount of exogenous non-metallic inclusions into the liquid steel. Electromagnetic induction controlled automated steel teeming (EICAST) replaces the traditional application of filler sand in the ladle tapping process, thus avoiding the secondary contamination during continuous casting and providing a novel approach to improving the cleanliness of the liquid steel. The application of EICAST technology requires the adjustment of various process parameters, among which the selection and configuration of power supply parameters are crucial for improving the heating efficiency and achieving the automatic teeming for ladle treatment. The current work utilizes a simulation-based methodology coupling the multiple physical fields including electromagnetic field, temperature field, and solid-liquid phase transition, to investigate the influence of different power supply parameters on the heating efficiency of the blocking layer. The obtained results indicate that a minimum current of 550 A is required to achieve a 1 mm critical melting width at a specific frequency of 200 kHz. Based on the obtained results, the exploration of the nonlinear matching relationship among parameters likecurrent intensity, frequency, etc., can be extended to a general longitudinal magnetic flux induction heating model. It indicates the mechanism of electromagnetic induction heating and clarifies the interrelationships among different power supply parameters, laying the foundation for the further widespread application of EICAST in the steel industry.

Key words

clean steel / ladle teeming / induction heating / electromagnetic drainage / multiphysics field coupling / non-metallic inclusion

Cite this article

Download Citations
LI Yang, HE Ming, MU Wangzhong, ZHAO Lijia, TIAN Chen, WANG Qiang. Influence of power supply parameters on heating efficiency of blocking layer in electromagnetic induction-controlled steel teeming system[J]. Journal of Iron and Steel Research, 2024, 36(12): 1530-1544 https://doi.org/10.13228/j.boyuan.issn1001-0963.20240109

References

[1] 张立峰.关于钢洁净度指数的讨论[J].炼钢,2019,35(3):1.
(Zhang L F.Discussion on the index of steel cleanliness[J].Steelmaking,2019,35(3):1.)
[2] 张立峰,李燕龙,任英.钢中非金属夹杂物的相关基础研究(Ⅱ):夹杂物检测方法及脱氧热力学基础[J].钢铁,2013,48(12):1.
(Zhang L F,Li Y L,Ren Y.Fundamentals of non-metallic inclusions in steel:part Ⅱ.Evaluation method of inclusions and thermodynamics of steel deoxidation[J].Iron and Steel,2013,48(12):1.)
[3] Chen W,Zhang L F,Wang Y D,et al.Prediction on the three-dimensional spatial distribution of the number density of inclusions on the entire cross section of a steel continuous casting slab[J].International Journal of Heat and Mass Transfer,2022,190:122789.
[4] Birat J P.Steel cleanliness and environmental metallurgy[J].Metallurgical Research & Technology,2016,113(2):201.
[5] 张立峰,李燕龙,任英.钢中非金属夹杂物的相关基础研究(Ⅰ):非稳态浇铸中的大颗粒夹杂物及夹杂物的形核、长大、运动、去除和捕捉[J].钢铁,2013,48(11):1.
(Zhang L F,Li Y L,Ren Y.Fundamentals of non-metallic inclusions in steel:part Ⅰ.Control of unsteady casting and big inclusions; nucleation,motion,removal and capture of inclusions in molten steel[J].Iron and Steel,2013,48(11):1.)
[6] Park J H,Kang Y.Inclusions in stainless steels-a review[J].Steel Research International,2017,88(12):1700130.
[7] Gupta A,Goyal S,Padmanabhan K A,et al.Inclusions in steel:micro-macro modelling approach to analyse the effects of inclusions on the properties of steel[J].The International Journal of Advanced Manufacturing Technology,2015,77(1):565.
[8] Zhao S,Wang B S,Zhu S B,et al.Optimizing RH refining process to maximize cleanliness of low-carbon low-silicon Al killed steel[J].Ironmaking & Steelmaking,2023,50(5):451.
[9] Kikuchi N.Development and prospects of refining techniques in steelmaking process:steelmaking[J].ISIJ International,2020,60(12):2731.
[10] Zhang L,Thomas B G,Cai K,et al.Inclusion invetigation during clean steel production at baosteel[C]//Proceeding of ISS Tech 2003 (Conf.Proc.),Indianapolis,IN,USA,2003.
[11] Houseman D,Fim M.Ladle and Ladle Control Systems-7[J].Steel Times,1976,204(9):788.
[12] Verrelle D,Goedert T,Gauche A,et al.Improvement in linear sliding gate system by rotation of the mobile plate at the ladle stand[J].Revue de Métallurgie,2009,106(5):202.
[13] Meurling F,Melander A,Tidesten M,et al.Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels[J].International Journal of Fatigue,2001,23(3):215.
[14] Kobayashi Y,Todoroki H,Kirihara F,et al.Sintering behavior of silica filler sands for sliding nozzle in a ladle[J].ISIJ International,2014,54(8):1823.
[15] da Cruz R T,Pelisser G F,Bielefeldt W V,et al.Free opening performance of steel ladle as a function of filler sand properties[J].Materials Research,2016,19(2):408.
[16] Tajik R,Nugin J,Holke C.The Influence of Placement and Sintering Time of the Steel Ladle Filler-sand[D]//Stockholm:KTH Royal Institute of Technology,2018.
[17] Morais F A M,Costa Neto J G,Amaral E A,et al.An overview of ladle free open performance at ArcelorMittal Brasil Monlevade[J].Revue de Métallurgie,2008,105(3):115.
[18] Neves L,Tavares R P.Analysis of the mathematical model of the gas bubbling curtain injection on the bottom and the walls of a continuous casting tundish[J].Ironmaking & Steelmaking,2017,44(8):559.
[19] Demetlika P,Ardesi A,Visentini I,et al.Q-Robot CAST for Ladle Area:Reaching New Levels of Automation and Safety in Continuous Casting[C]//Proceedings of METEC and 2nd European Steel Technology and Application Days (ESTAD)Conference.Düsseldorf,Germany,2017.
[20] Gao A,Li D J,Wang Q,et al.Analysis of an automatic steel-teeming method using electromagnetic induction heating in slide gate system[J].ISIJ International,2010,50(12):1770.
[21] He M,Li X L,Liu X G,et al.Coil ambient temperature and its influence on the formation of blocking layer in the electromagnetic induction-controlled automated steel-teeming system[J].Acta Metallurgica Sinica (English Letters),2019,32(3):391.
[22] Wang Q,Li D J,Liu X G,et al.Effects of steel teeming in new slide gate system with electromagnetic induction[J].Journal of Iron and Steel Research International,2015,22(1):30.
[23] 高翱,王强,李德军,等.电磁引流技术的出钢效率及其影响因素[J].金属学报,2010,46(5):634.
(Gao A,Wang Q,Li D J,et al.Efficiency and influencing factors of electromagnetic steel-teeming technology[J].Acta Metallurgica Sinica,2010,46(5):634.)
[24] 高翱,王强,金百刚,等.电磁引流系统的出钢效果分析[J].东北大学学报(自然科学版),2010,31(4):515.
(Gao A,Wang Q,Jin B G,et al.Effect analysis of a newly developed electromagnetic steel tapping system[J].Journal of Northeastern University (Natural Science),2010,31(4):515.)
[25] 高翱,王强,李德军,等.电磁出钢系统中Fe-C合金的状态研究[J].金属学报,2011,47(2):219.
(Gao A,Wang Q,Li D J,et al.State of Fe-C alloy in the electromagnetic steel-teeming system[J].Acta Metallurgica Sinica,2011,47(2):219.)
[26] De-Jun L I,Qiang W,Xing-An L,et al.A new steel teeming technology by using electromagnetic induction heating system in ladle[J].Journal of Iron and Steel Research International,2012,2:766.
[27] 李德军,刘兴安,王强,等.电磁出钢装置中座砖内温度分布的分析[J].东北大学学报(自然科学版),2012,33(5):661.
(Li D J,Liu X A,Wang Q,et al.Analysis of temperature distribution in nozzle pocket brick of electromagnetic steel-tapping device[J].Journal of Northeastern University (Natural Science),2012,33(5):661.)
[28] Liu X A,Wang Q,Li D J,et al.Coil design in electromagnetic induction-controlled automated steel-teeming system and its effects on system reliability[J].ISIJ International,2014,54(3):482.
[29] 刘兴安,王强,史纯阳,等.电磁出钢系统中感应加热电源设计及其对系统可靠性的影响[J].中南大学学报(自然科学版),2015,46(9):3188.
(Liu X A,Wang Q,Shi C Y,et al.Power supply design in electromagnetic induction controlled automated steel-teeming system and its effects on system reliability[J].Journal of Central South University (Science and Technology),2015,46(9):3188.)
[30] 刘兴安,王强,刘铁,等.电磁出钢系统中感应加热线圈工况温度分析[J].东北大学学报(自然科学版),2014,35(1):51.
(Liu X A,Wang Q,Liu T,et al.Analysis of working temperature of induction heating coil in electromagnetic steelmaking system[J].Journal of Central South University (Science and Technology),2014,35(1):51.)
[31] He M,Wang Q,Liu X A,et al.Analysis of power supply heating effect during high temperature experiments based on the electromagnetic steel teeming technology[J].High Temperature Materials and Processes,2017,36(4):441.
[32] Li X L,He M,Zhu X W,et al.Analysis of heat insulation for coil in the electromagnetic induction controlled automated steel-teeming system[J].Metals,2019,9(4):434.
[33] 何明,李显亮,王情伟,等.磁屏蔽对电磁出钢系统中感应加热电源功率损耗的影响[J].金属学报,2019,55(2):249.
(He M,Li X L,Wang Q W,et al.Influence of magnetic shielding on the power loss of induction heating power supply in the electromagnetic induction controlled automated steel teeming system[J].Acta Metallurgica Sinica,2019,55(2):249.)
[34] He M,Li X L,Wang Q W,et al.Influence factors analysis of Fe-C alloy blocking layer in the electromagnetic induction-controlled automated steel teeming technology[J].Acta Metallurgica Sinica (English Letters),2020,33(5):671.
[35] He M,Li X L,Cao Z Q,et al.Effect of heat treatment on the microstructure and properties ofCu-0.6Cr-0.2Zr alloy induction coil in electromagnetic steel-teeming system[J].Vacuum,2017,146:130.
[36] Jang J Y,Chiu Y W.Numerical and experimental thermal analysis for a metallic hollow cylinder subjected to step-wise electro-magnetic induction heating[J].Applied Thermal Engineering,2007,27(11/12):1883.
[37] Prasad A K,Kapil S,Bag S.Critical conditions for melting of metallic wire in induction heating system through numerical simulation and experiments[J].Journal of Manufacturing Processes,2022,77:678.
[38] Peng W,Chen X R,Zhang L,et al.Finite element analysis of temperature uniformity in transverse induction heating process in ESP rolling[J].The International Journal of Advanced Manufacturing Technology,2021,115(11):3423.
[39] Liu W W,Feng Y F,Yang T S,et al.Analysis of the induction heating efficiency and thermal energy conversion ability under different electromagnetic stick structures in the RPECT[J].Applied Thermal Engineering,2018,145:277.
[40] Lu L L,Zhang S M,Xu J,et al.Numerical study of titanium melting by high frequency inductiveheating[J].International Journal of Heat and Mass Transfer,2017,108:2021.
[41] Kita E,Yanagihara H,Hashimoto S,et al.Hysteresis power-loss heating of ferromagnetic nanoparticles designed for magnetic thermoablation[J].IEEE Transactions on Magnetics,2008,44(11):4452.
[42] Rudnev V,Loveless D,Cook R L.Handbook of Induction Heating[M].Florida:CRC Press,2017.
[43] Ho K.A thermodynamically consistent model for magnetic hysteresis[J].Journal of Magnetism and Magnetic Materials,2014,357:93.
[44] Sadiku M.Elements of Electromagnetics[M].Oxford:Oxford University Press,2018.
[45] Chabay R,Sherwood B,Quivers W W.Electric and magnetic interactions[J].Physics Today,1995,48(10):70.
[46] Li H Y,Hu C Z,Wang H H,et al.Thermal effect of nanoparticles on the metal foam composite phase change material:a pore-scale study[J].International Journal of Thermal Sciences,2022,179:107709.
[47] Mizonov V,Yelin N.Numerical study of melting a rod by a periodically moving local heat source[J].International Journal of Thermal Sciences,2015,97:1.
[48] Song M C,Moon Y H.Coupled electromagnetic and thermal analysis of induction heating for the forging of marine crankshafts[J].Applied Thermal Engineering,2016,98:98.
[49] Aba-perea P E,Becker E.Measurement and modeling of thermal evolution during induction heating and thixoforming of low carbon steel[J].Journal of Materials Processing Technology,2020,283:116717.
PDF(31788 KB)

55

Accesses

0

Citation

Detail

Sections
Recommended

/