Austenite grain size and distribution models of Nb-Ti microalloyed steel

LI Mingjie, ZHANG Xinyue, WANG Siqiao, ZHANG Xinyao, ZHOU Xiaoguang, LIU Zhenyu

Journal of Iron and Steel Research ›› 2025, Vol. 37 ›› Issue (3) : 367-374.

PDF(9814 KB)
PDF(9814 KB)
Journal of Iron and Steel Research ›› 2025, Vol. 37 ›› Issue (3) : 367-374. DOI: 10.13228/j.boyuan.issn1001-0963.20240173
Materials Research

Austenite grain size and distribution models of Nb-Ti microalloyed steel

  • LI Mingjie, ZHANG Xinyue, WANG Siqiao, ZHANG Xinyao, ZHOU Xiaoguang, LIU Zhenyu
Author information +
History +

Abstract

In order to investigate the effect of austenitizing process on the grain growth behaviors of Nb-Ti microalloyed steel, thermal simulation experiments were conducted to study the austenite grain growth behavior of the experimental steel within the range of austenitizing temperature (1 140-1 220 ℃) and holding time (180-540 s). The mathematical models for austenite grain growth and its distribution were established. The results indicate that when the holding time is kept constant, the austenite grains tend to grow larger and become more uniformly distributed. When the austenitizing temperature is held constant, prolonging the holding time slows down the growth rate of austenite grains, and the size distribution of the austenite grains will also tend to become more uniform. The mathematical models for the average austenite grain size and its distribution closely match the measured values. Contour plots are generated for the average austenite grain size and grain size distribution parameter under different austenitizing process conditions, which provide a theoretical foundation for determining reasonable austenitizing processes for experimental steels.

Key words

Nb-Ti microalloyed steel / austenitizing / grain growth / grain size distribution / mathematical model

Cite this article

Download Citations
LI Mingjie, ZHANG Xinyue, WANG Siqiao, ZHANG Xinyao, ZHOU Xiaoguang, LIU Zhenyu. Austenite grain size and distribution models of Nb-Ti microalloyed steel[J]. Journal of Iron and Steel Research, 2025, 37(3): 367-374 https://doi.org/10.13228/j.boyuan.issn1001-0963.20240173

References

[1] 杨洪波,王豪,赵旭,等.微合金高强钢纳米相间析出行为研究进展[J].钢铁,2021,56(12):10.
(YANG H B,WANG H,ZHAO X,et al.Research progress on nano-scale interphase precipitation behavior of microalloyed high-strength steel[J].Iron and Steel,2021,56(12):10.)
[2] 张琪,王厚昕,朱敏,等.Nb微合金化高碳钢奥氏体晶粒长大原位观察[J].钢铁研究学报,2022,34(8):840.
(ZHANG Q,WANG H X,ZHU M,et al.In-situ observation on austenite grain growth of a Nb microalloyed high-carbon steel[J].Journal of Iron and Steel Research,2022,34(8):840.)
[3] 吴一萌,赵宪明,周晓光,等.Nb微合金化U型肋桥梁钢Q420qD静态再结晶行为研究[J].轧钢,2023,40(4):52.
(WU Y M,ZHAO X M,ZHOU X G,et al.Research on static recrystallization behavior of Nb microalloyed U-ribbed bridge steel Q420qD[J].Steel Rolling,2023,40(4):52.)
[4] 张朝磊,邵洙浩,李戬,等.铌微合金化技术在中高碳钢中的应用现状与发展[J].材料导报,2021,35(5):5102.
(ZHANG C L,SHAO Z H,LI J,et al.Application and development of niobium microalloying technology in medium and high carbon steel[J].Materials Reports,2021,35(5):5102.)
[5] 范泽熙,杨弋涛.重载车用特种低合金钢的铌钛微合金化技术研究与应用现状[J].铸造,2021,70(1):62.
(FAN Z X,YANG Y T.Research and application status of niobium-titanium microalloying technology of special low alloy steel for heavy truck[J].Foundry,2021,70(1):62.)
[6] 陈润农,李昭东,张明亚,等.铌微合金化极低屈服点钢的组织与性能[J].钢铁,2019,54(1):63.
(CHEN R N,LI Z D,ZHANG M Y,et al.Microstructure and properties of Nb microalloyed ultra low yield point steel[J].Iron and Steel,2019,54(1):63.)
[7] 马壮,侯振伟,陈雪慧,等.Nb对V-N微合金化钢高温热塑性的影响[J].钢铁研究学报,2022,34(10):1177.
(MA Z,HOU Z W,CHEN X H,et al.Effect of Nb on hot ductility of V-N microalloyed steel[J].Journal of Iron and Steel Research,2022,34(10):1177.)
[8] 李凡,葛章琦,邢军,等.奥氏体晶粒尺寸对热轧低碳微合金钢动态再结晶临界应变的影响[J].材料热处理学报,2021,42(11):51.
(LI F,GE Z Q,XING J,et al.Effect of prior austenite grain size on critical strain of dynamic recrystallization of hot rolled low carbon microalloyed steel[J].Transactions of Materials and Heat Treatment,2021,42(11):51.)
[9] 熊国源,刘利华,朱文涛.奥氏体化温度对40CrNiMo钢组织和性能的影响[J].中国冶金,2021,31(7):30.
(XIONG G Y,LIU L H,ZHU W T.Effect of austenizing temperature on microstructure and mechanical properties of 40CrNiMo steel[J].China Metallurgy,2021,31(7):30.)
[10] RUDNIZKI J,ZEISLMAIR B,PRAHL U,et al.Prediction of abnormal grain growth during high temperature treatment[J].Computational Materials Science,2010,49(2):209.
[11] 刘华松,董延楠,郑宏光,等.Nb微合金化对齿轮钢高温渗碳奥氏体晶粒度的影响[J].钢铁研究学报,2021,33(8):828.
(LIU H S,DONG Y N,ZHENG H G,et al.Influence of Nb microalloying on grain size of austenite in high-temperature carburized gear steel[J].Journal of Iron and Steel Research,2021,33(8):828.)
[12] HWANG B,SUH D W,KIM S J.Austenitizing temperature and hardenability of low-carbon boron steels[J].Scripta Materialia,2011,64(12):1118.
[13] 宁方坤,贾伟涛,朱伏先,等.P91厚壁钢管混晶组织分析[J].东北大学学报(自然科学版),2018,39(1):50.
(NING F K,JIA W T,ZHU F X,et al.Analysis of mixed-grain microstructure of P91 thick-walled steel pipes[J].Journal of Northeastern University (Natural Science),2018,39(1):50.)
[14] 马跃杰,康杰,张福成,等.热处理工艺对高碳贝氏体钢的组织与性能影响[J].中国冶金,2022,32(2):67.
(MA Y J,KANG J,ZHANG F C,et al.Effect of heat treatment process on microstructure and properties of high carbon bainitic steel[J].China Metallurgy,2022,32(2):67.)
[15] 张晓东,夏佃秀,王守仁,等.奥氏体化温度对51CrV4钢淬火组织和性能的影响[J].钢铁,2019,54(3):76.
(ZHANG X D,XIA D X,WANG S R,et al.Effect of austenitizing temperature on quenching microstructure and properties of 51CrV4 steel[J].Iron and Steel,2019,54(3):76.)
[16] ZHANG Y,LI X H,LIU Y C,et al.Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel:in situ observation and modeling[J].Materials Characterization,2020,169:110612.
[17] HAN Z P,SUN W H,LI G B,et al.Austenite grain growth law of high-strength steel for offshore engineering[J].Materials Science Forum,2022,1054:57.
[18] MENG F Y,WANG J J,GUO J,et al.Growth behavior and kinetics of austenite grain in low-carbon high-strength steel with copper[J].Materials Research Express,2021,8(9):096504.
[19] DUAN L N,WANG J M,LIU Q Y,et al.Austenite grain growth behavior of X80 pipeline steel in heating process[J].Journal of Iron and Steel Research International,2010,17(3):62.
[20] MA L,WANG M Q,SHI J,et al.Influence of niobium microalloying on rotating bending fatigue properties of case carburized steels[J].Materials Science and Engineering,2008,498A(1/2):258.
[21] VARANASI R S,LIPIŃSKA-CHWAŁEK M,MAYER J,et al.Mechanisms of austenite growth during intercritical annealing in medium manganese steels[J].Scripta Materialia,2022,206:114228.
[22] Porter D A,Easterling K E.Phase transformations in metals and alloys[M].[S.l.] :CRC Press,2009.
[23] 代智鹏,杨健,张庆松,等.汽车用齿轮钢奥氏体晶粒长大与第二相粒子控制技术研究进展[J].工程科学学报,2023,45(11):1878.
(DAI Z P,YANG J,ZHANG Q S,et al.Research progress on austenite grain growth and second-phase particle control technology in automotive gear steel[J].Chinese Journal of Engineering,2023,45(11):1878.)
[24] 杨清,张立文,张驰,等.低碳Nb-V-Ti微合金钢X70的奥氏体晶粒长大行为[J].金属热处理,2019,44(4):1.
(YANG Q,ZHANG L W,ZHANG C,et al.Austenite grain growth behavior of low carbon Nb-V-Ti microalloyed steel X70[J].Heat Treatment of Metals,2019,44(4):1.)
[25] SELLARS C M,WHITEMAN J A.Recrystallization and grain growth in hot rolling[J].Metal Science,1979,13(3/4):187.
[26] TAKAYAMA Y,FURUSHIRO N,TOZAWA T,et al.A significant method for estimation of the grain size of polycrystalline materials[J].Materials Transactions,JIM,1991,32(3):214.
[27] GROEBER M.A framework for automated analysis and simulation of 3D polycrystalline microstructures.Part 1:Statistical characterization[J].Acta Materialia,2008,56(6):1257.
[28] 赵杰,万响亮,柯睿,等.晶粒细化对奥氏体不锈钢高温力学性能的影响[J].钢铁研究学报,2023,35(1):88.
(ZHAO J,WAN X L,KE R,et al.Effect of grain refinement on mechanical properties of austenitic stainless steels at high temperature[J].Journal of Iron and Steel Research,2023,35(1):88.)
[29] 郑冰,徐东,王怡群,等.34CrNi3MoV钢奥氏体晶粒长大模型验证与应用[J].特殊钢,2023,44(6):101.
(ZHENG B,XU D,WANG Y Q,et al.Verification and application of austenite grain growth model in 34CrNi3MoV steel[J].Special Steel,2023,44(6):101.)
[30] KRÓLICKA A,RADWAŃSKI K,AMBROZIAK A,et al.Analysis of grain growth and morphology of bainite in medium-carbon spring steel[J].Materials Science and Engineering,2019,768A:138446.
PDF(9814 KB)

76

Accesses

0

Citation

Detail

Sections
Recommended

/