|
|
Effect of electromagnetic stirring on the aggregation and removement of liquid inclusions in continuous casting mold |
LI Xiang-long1, SUN Qun2, QU Tian-peng1, WANG De-yong1 |
1. School of Iron and Steel, Soochow University, Suzhou 215137, Jiangsu, China; 2. No. 3 Steelmaking Plant, Angang Steel Co., Ltd., Anshan 114002,Liaoning, China |
|
|
Abstract The characteristics of high casting speed is high efficiency and low cost, which indicates the future of continuous casting process. In this work, the multiphase flow and inclusion removements in a CSP mold are studied based on the Large Eddy Simulation model and Eulerian-Lagrange approach. Results reveal that the electromagnetic stirring (EMS) significantly intensifies turbulence in a continuous casting mold and remove more inclusions into the liquid slag. What's more, the transverse velocity is enhanced due to EMS and thus the injection of steel is confined with the mold, which significantly reduces the injection depth of liquid steel and beneficial for the floating of inclusions. In addition, due to the fact that horizontal velocity is high, the injection is confined within the electromagnetic stirring zone, which significantly reduces the injection depth of molten steel, promoting floating of inclusions. In addition, because the flow field is intensified under the effect of EMS, the slag-metal interface fluctuates more frequently, so more slag drops are involved into the steel. So the EMS has double-sided effects: Although it may enhance the removing rate of inclusions, it may also run the risk of slag entrapment into the steel. This model has a certain guiding significance to control the production of high drawing speed continuous casting slab.
|
Received: 12 May 2022
|
|
|
|
[1] |
Joo S, Han J W, Guthrie R. Inclusion behavior and heat-transfer phenomena in steelmaking tundish operatings: Part III. Applications-computational approach to tundish design[J]. Metallurgical and Materials Transactions B, 1993, 24(5): 779.
|
[2] |
舒志浩, 程树森, 赵晶晶. 钢液中夹杂物的碰撞长大及去除率[J]. 北京科技大学学报, 2009, 31(1): 118.
|
[3] |
ZHANG L F, Taniguchi S, CAI K K. Fluid flow and inclusion removal in continuous casting tundish[J]. Metallurgical and Materials Transactions B, 2000, 31(2): 253.
|
[4] |
Taniguchi S, Kikuchi A. Mechanism of collision and coagulation between fine particles in fluid[J]. Tetsu-to-Hagané, 1992, 78 (4): 527.
|
[5] |
Hirotada A, Yuki N, Shimasaki S. Theoretical model on heterocoagulation of inclusion in molten steel and its experimental verification: part II. cold model experiment[J]. Tetsu-to-Hagané, 2015, 101(2): 139.
|
[6] |
印传磊, 翟万里, 蒋栋初, 等. 42CrMo钢大尺寸夹杂物的来源与控制[J]. 中国冶金, 2021, 31(1): 36.
|
[7] |
袁静, 时朋召, 帅勇, 等. 16MnDR特厚钢板典型缺陷的形成原因分析[J]. 连铸, 2020 (6): 68.
|
[8] |
祁敏翔, 仲阳阳, 李振兴, 等. 厚规格718H模具钢探伤不合格原因分析及控制[J]. 连铸, 2020(5): 47.
|
[9] |
曹磊, 金朋亮, 肖远悠, 等. 镁处理低碳钢中MgAl2O4夹杂物的聚集行为[J]. 钢铁, 2020, 55(11): 37.
|
[10] |
王宁, 高锦国, 杨曙磊, 等. 真空感应熔炼中夹杂物运动行为数值模拟[J]. 中国冶金, 2021, 31(12): 20.
|
[11] |
翟俊, 郎炜昀, 杨永杰. 不锈钢典型夹杂物在轧制过程的衍变分析[J]. 中国冶金, 2023, 33(1): 123.
|
[12] |
李向龙, 冯胜强, 张志霄, 等. 连铸坯拉速对结晶器卷渣现象的影响[J]. 连铸, 2022(2): 100.
|
[13] |
任英, 李鑫哲, 袁天祥, 等. 热轧卷板表面夹渣缺陷来源分析及控制现状[J]. 钢铁, 2022, 57(1): 13.
|
[14] |
刘卫东, 陈洋, 李鹏飞. Nb、Ti碳氮化物在超纯铁素体不锈钢铸坯中的析出规律[J]. 河北冶金, 2022(1): 26.
|
[15] |
袁志鹏, 朱立光, 韩毅华,等. 碱度对高速薄板坯保护渣结晶性能的影响[J]. 中国冶金, 2023, 33(1): 47.
|
[16] |
胡群, 张硕, 王璞, 等. 大方坯结晶器内液面波动与卷渣行为[J]. 中国冶金, 2020, 30(6): 63.
|
[17] |
邓小旋, 季晨曦, 王胜东, 等. 冷轧薄板线状缺陷的工艺控制[J]. 中国冶金, 2017, 27(4): 55.
|
[18] |
LIU Z Q, LI B K, QI F S, et al. Population balance modeling of polydispersed bubbly flow in continuous casting using average bubble number density approach[J]. Powder Technology,2017, 319: 139.
|
[19] |
Ferretti E. DECM: A discrete element for multiscale modeling of composite materials using the cell method[J]. Materials, 2020, 13(4): 1
|
[20] |
全齐, 张志霄, 李向龙, 等. 不锈钢连铸中间包内夹杂物去除行为数值模拟[J]. 连铸, 2022(2):10.
|
[21] |
梁震江, 郑万, 王君驰, 等. 过滤控流中间包流场及夹杂物去除的数值模拟[J]. 连铸, 2021 (5): 88.
|
[22] |
杜依诺, 郭磊, 杨洋, 等. 超重力场下钢液中夹杂物上浮行为的数值模拟[J]. 钢铁, 2022, 57(7): 9.
|
[23] |
魏光升, 董建锋, 朱荣, 等. 钢包底吹对RH脱氢和夹杂物的影响[J]. 钢铁, 2021, 56(2): 63.
|
[24] |
赵凯, 魏志芳, 张巧荣, 等. 氧煤燃烧熔分炉炉料沉降与传热行为数值模拟[J]. 钢铁, 2021, 56(11): 11.
|
[25] |
朱立光, 张利民, 王杏娟, 等. 漏斗形结晶器液面流场物理试验与数值模拟分析[J]. 连铸, 2021 (6): 2.
|
[26] |
王建武, 王宁, 杨树峰. 基于数值模拟的镍基高温合金电渣重熔工艺优化[J]. 中国冶金, 2022, 32(3): 80.
|
[27] |
刘同威, 张燕超, 张彩军. 吹氩条件下结晶器钢渣液面波动行为[J]. 连铸, 2022 (3): 80.
|
[28] |
LI X L, LI B K, LIU Z Q, et al. In-situ analysis and numerical study of inclusion distribution in a vertical-bending caster[J]. ISIJ International, 2018, 58(11): 2052.
|
[1] |
ZHAI Jun, WANG Wei, LANG Wei-yun. Analysis of formation mechanism of hard inclusions during metallurgical process of 304 stainless steel[J]. Iron and Steel, 2023, 58(4): 39-47. |
[2] |
LI Kai-chuang, LI Li-juan, CAI Chang-qing, XU Ying-hua, XU Heng, ZHAI Qi-jie. Effect of M-PMO on inclusion of HRB400EG thread steel continuous casting billet[J]. Iron and Steel, 2023, 58(4): 58-68. |
[3] |
XIAO Jiong1,XIANG Junliang1,XU Guodong2,WANG Yingchun2,ZHONG Honggang1,ZHAI Qijie1. Thermal simulation of microstructure evolution in surface layer of 0.1 mass%C low carbon steel slab[J]. JOURNAL OF IRON AND STEEL RESEARCH , 2023, 35(3): 255-263. |
[4] |
ZHUANG Ying, LI Guo-ping. Inclusion control theory and practice of heat resistant stainless steel for exhaust system[J]. Iron and Steel, 2023, 58(3): 151-157. |
[5] |
JIAO Ao-teng, YANG Shu-feng, LI Jing-she, SONG Jing-ling, LI Heng-hua, ZHANG Fu-jun. Evolution of inclusions in 26CrMo7S steel produced by EAF-LF-VD-CC process[J]. CONTINUOUS CASTING, 2023, 42(2): 28-33. |
[6] |
ZHOU Guo-tao, CHEN Jin, HUANG Biao-cai, YAN Wei, LI Jing. Numerical simulation of solidification and heat transfer of Q355B slab during continuous casting[J]. CONTINUOUS CASTING, 2023, 42(2): 43-51. |
|
|
|
|