连铸板坯凝固不均匀性及遗传问题分析

李新羽, 魏子健, 王齐灿, 王旭东, 姚曼

连铸 ›› 2025, Vol. 44 ›› Issue (1) : 64-70.

欢迎访问《连铸》官方网站!今天是 2025年7月30日 星期三
连铸 ›› 2025, Vol. 44 ›› Issue (1) : 64-70. DOI: 10.13228/j.boyuan.issn1005-4006.20240071
技术交流

连铸板坯凝固不均匀性及遗传问题分析

  • 李新羽1,2, 魏子健1,2, 王齐灿1,2, 王旭东1,2, 姚曼1,2
作者信息 +

Analysis of inhomogeneity of solidification and genetic problems of continuous casting slab

  • 李新羽1,2, 魏子健1,2, 王齐灿1,2, 王旭东1,2, 姚曼1,2
Author information +
文章历史 +

摘要

铸坯在结晶器内的非均匀传热、凝固、初生坯壳的薄厚以及二冷区铸坯表面温度、应力等均匀程度直接影响铸坯表面与内部质量。以反算热流为结晶器内铸坯边界条件,利用ANSYS有限元软件模拟某钢厂Q235B板坯全流程的温度场、应力场,分析了铸坯表面温度、等效应力、坯壳的不均匀性、遗传性以及裂纹敏感性。结果表明,结晶器内铸坯凝固厚度的不均匀性遗传至二冷区,铸坯表面等效应力的不均匀性遗传程度较小;在二冷区,坯壳厚度不均匀性改善程度较小,表面等效应力不均匀性改善程度较大。本研究案例条件下,内弧左侧角部温度最低,为892 ℃,等效应力最大,为12.2 MPa;内弧偏角部区域温度最高,为1 263 ℃,等效应力最小,为2.54 MPa。铸坯表面裂纹敏感性:1/4中心处>1/8中心处>1/2中心处。铸坯表面裂纹敏感性指数在结晶器内达到最大值0.52,在二冷初期回温程度较大阶段裂纹敏感性增大,凝固后期坯壳较厚,裂纹敏感性较低且变化幅度很小。

Abstract

The inhomogeneous heat transfer, solidification, thickness of primary shell, temperature and stress of secondary cooling zone directly affect the surface and internal quality of slab. The temperature field and stress field of the whole process of Q235B slab in a steel plant were simulated by ANSYS Finite Element Software, the surface temperature, equivalent stress, shell inhomogeneity, heredity and crack sensitivity were analyzed. The results show that the non-uniformity of slab solidification thickness in mold is inherited to secondary cooling zone, and the non-uniformity of equivalent stress on slab surface is less inherited, the non-uniformity of surface equivalent stress wasgreatly improved. In the case study, the temperature at the left corner of the inner arc was the lowest (892 ℃), the equivalent stress was the highest (12.2 MPa), and the temperature at the deflection corner was the highest (1 263 ℃), the equivalent stress was the lowest (2.54 MPa). The sensitivity of slab surface crack is 1/4 center > 1/8 center > 1/2 center.The sensitivity index of slab surface crack reaches the maximum value of 0.52 in mold. In the early stage of secondary cooling, the crack sensitivity is increased.And in the late stage of solidification, the shell is thicker, the crack sensitivity is lower and the change range is small.

关键词

连铸板坯 / 反算热流 / 坯壳 / 均匀性 / 遗传性 / 裂纹敏感性

Key words

continuous casting slab / back-calculation heat flux / shell / uniformity / heredity / crack sensitivity

图表

引用本文

导出引用
李新羽, 魏子健, 王齐灿, . 连铸板坯凝固不均匀性及遗传问题分析[J]. 连铸, 2025, 44(1): 64-70 https://doi.org/10.13228/j.boyuan.issn1005-4006.20240071
LI Xinyu, WEI Zijian, WANG Qican, et al. Analysis of inhomogeneity of solidification and genetic problems of continuous casting slab[J]. Continuous Casting, 2025, 44(1): 64-70 https://doi.org/10.13228/j.boyuan.issn1005-4006.20240071

参考文献

[1] 陈强强. 钢铁提高连铸坯质量的技术改造研究[J]. 冶金与材料,2023,43(7):70.
[2] 常卓,杨军,徐李军,等. Q355R连铸坯表面微裂纹研究[J]. 钢铁研究学报,2021,33(12):1296.
[3] 赵兵兵,袁天祥,刘延强,等. 板坯连铸机漏钢原因分析及预防措施[J]. 连铸,2023(6):36.
[4] 张磊,翟冰钰,王万林. 薄板坯连铸及其铸坯表面缺陷的形成机理[J]. 连铸,2020(4):22.
[5] 赵子豪,魏晶晶,蔡来强,等. 连铸坯实测反问题热弹黏塑性建模与分析[J]. 中国冶金,2021,31(12):39.
[6] ZHONG L C,LI B K,ZHU Y X.Fluid flow in a four-strand bloom continuous casting tundish with different flow modifiers[J]. ISIJ International,2007,47(1):88.
[7] MERDER T,WARZECHA M. Optimization of a six-strand continuous casting tundish:Industrial measurements and numerical investigation of the tundish modifications[J]. Metallurgical and Materials Transactions,2012,43B(4):856.
[8] 黎建全,龙木军,陈登福,等. 板坯连铸机二次冷却均匀性的分析与优化[J]. 炼钢,2021,37(1):57.
[9] 张涛,李金波,石建强,等.板坯连铸结晶器液面周期性波动的原因[J]. 河北冶金,2023(5):36.
[10] 马占彪,赵华,王学兵,等.方坯结晶器电磁搅拌电磁场的数值模拟[J]. 河北冶金,2022(11):8.
[11] 尹合壁,姚曼. 圆坯连铸结晶器传热的反算法[J]. 金属学报,2005,41(6):638.
[12] 李天衣,王旭东,孔令伟,等. 基于反算热流的结晶器内流动—传热—凝固耦合模拟[J]. 工程科学学报,2016,38(4):494.
[13] 周国涛,陈金,黄标彩,等. Q355B板坯连铸凝固传热行为数值模拟[J]. 连铸,2023(2):43.
[14] 申燕强,白明华,高朋垒,等. 不同角部形状特厚矩形坯凝固传热及应变数值模拟[J]. 钢铁,2016,51(4):38.
[15] 孙聪磊,蔡来强,王旭东,等. 基于无网格伽辽金法的板坯传热及力学行为[J]. 钢铁,2022,57(10):91.
[16] MARUKOVICH E I,DEMCHENKO E B. Heat transfer in the mold during vertical continuous casting of steel[J]. Foundry Production and Metallurgy,2018(3):26.
[17] MARCANDALLI A,MAPELLI C,NICODEMI W. A thermomechanical model for simulation of carbon steel solidification in mould in continuous casting[J]. Ironmaking and Steelmaking,2003,30(4):265.
[18] 吴炳胜,傅彦棉,田倩影,等. 宽厚板坯连铸结晶器的热流密度与热分析[J]. 连铸,2014(6):23.
[19] 李玉娣,张发斌. 包晶钢板坯纵裂纹分析及保护渣优化[J]. 连铸,2021(2):57.
[20] 陈振业,张阔斌,王云阁,等. Q235B和Q345B钢中厚板表面纵裂纹的成因分析和工艺优化[J]. 特殊钢,2015,36(6):30.
[21] 罗龙,李丽荣,黄丽颖,等. 温度及应变速率对Q235B钢连铸坯高温力学性能的影响[J]. 热加工工艺,2014,43(10):79.
[22] 陈明昕,汪洪峰,杨晓江. 连铸板坯表面纵裂纹的形成原因及控制[J]. 连铸,2020(2):41.
[23] 尹合壁. 圆坯连铸结晶器内热-力学行为的分析[D]. 大连:大连理工大学,2005.
[24] 高仲,张兴中,姚书芳. 薄板坯表面纵裂研究进展[J]. 中国冶金,2007,17(12):4.

67

Accesses

0

Citation

Detail

段落导航
相关文章

/