|
|
Influence of billet physical properties on temperature field during induction heating |
JIANG Tao1, XIAO Hong1,2, LIU Yong1, JIANG Xiao-qi1 |
1. Electromagnetic Center, Hunan Zhongke Electric Co., Ltd., Yueyang 414000, Hunan,China; 2. College of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract In order to study the influence of physical properties of billets on the temperature field during induction heating, a coupled finite element model of electromagnetic and heat transfer of moving billets was established, and the influence of a specific physical quantity on the temperature field of billets was studied by single factor analysis method. Then, the influence of the two billets with different physical properties on the temperature field is compared and analyzed. The results show that the influence of relative permeability on cross section temperature is mainly caused by the larger induced current and the shallower yield depth. Under the influence of relative permeability and thermal conductivity, the temperature difference between carbon steel core and surface decreases slightly, while that between stainless steel core and surface increases slightly. In addition, combined with the actual heating process, when multiple physical properties change with temperature, the conductivity and specific heat capacity of carbon steel attenuate the effect of the relative permeability on the rapid rise of surface temperature during heating. The final test data show that the theoretical calculation results are 2.44%-6.97% higher than the actual heating results while the trend of temperature rising is consistent.
|
Received: 09 May 2022
|
|
|
|
[1] |
郭茂先,顾根华.连铸连轧温度补偿感应加热装置的研制[J].工业加热, 1995(1):3.
|
[2] |
王学兵,张兴中,仇圣桃,等.高速连铸直轧工艺的恒温出坯工艺参数研究[J].热加工工艺, 2017,46(7):128.
|
[3] |
干勇,姜起华,张如斌,等.炼钢-连铸新技术800问[M].北京:冶金工业出版社, 2004.
|
[4] |
张星.连续轧制过程中连铸坯表面划伤形貌的演变行为[J].河北冶金,2020(9):21.
|
[5] |
王振华, 刘元铭, 王涛, 等. 粗轧过程中轧制力和宽展的预测与分析[J]. 钢铁, 2022, 57(9): 95.
|
[6] |
康永林, 朱国明, 姜敏, 等. 板坯连铸大辊径大压下及低压缩比轧制特厚板[J]. 钢铁, 2022, 57(7): 95.
|
[7] |
杨健, 吴思炜. 基于机器学习的钢铁轧制过程性能预测[J]. 钢铁, 2021, 56(9): 1.
|
[8] |
陈禹, 宋春林, 贾宁波,等. 电磁搅拌对石油管用圆坯内部质量的改善[J]. 中国冶金, 2022, 32(8): 98.
|
[9] |
张然, 许琳, 韩泽峰, 等. 立式组合电磁制动对CSP结晶器内钢液流动及偏流控制[J]. 中国冶金, 2022, 32(1): 44.
|
[10] |
马建民. 80号钢连铸坯末端电磁搅拌优化与实践[J]. 中国冶金, 2021, 31(2): 72.
|
[11] |
潘栋, 郭庆涛, 于赋志, 等. 中间包电磁感应加热技术研究及应用进展[J]. 连铸, 2022(4): 2.
|
[12] |
肖红, 全嵩, 肖晓丹, 等. 大容量中间包电磁加热装备研制及其工业应用[J]. 连铸, 2021(5): 108.
|
[13] |
郭建龙,胡坤太,仇圣桃,等.连铸方坯感应加热温度场数值模拟研究[J].热加工工艺, 2015,44(5):72.
|
[14] |
项胜前,郭加林,周春荣,等.先进技术与装备一体化的等温快速挤压示范生产线[J].轻合金加工技术, 2011, 39(3):29.
|
[15] |
肖宏,许朋朋,祁梓宸,等.感应加热异温轧制制备钢/铝复合板[J].金属学报, 2020, 56 (2): 231.
|
[16] |
Pandit M. Trends and perspectives concerning temperature measurement and control in aluminiumextrusion[J]. Aluminium, 2000, 76(7/8):564.
|
[17] |
潘作为.基于ANSYS的感应加热数值模拟及感应器设计[D]. 大连:大连理工大学, 2006:2.
|
[18] |
干勇,倪满森,余志祥.现代连续铸钢使用手册[M].北京:冶金工业出版社, 2010:40.
|
[19] |
王振东,牟俊茂.钢材感应加热快速热处理[M].北京:化学工业出版社, 2012:1.
|
[20] |
徐燕祎, 张云虎, 李清平,等. 连铸恒温出坯电磁感应加热温度场分布与演变[J]. 连铸, 2021(4): 43.
|
[21] |
文怀宇,韩毅,曾慧敏,等.链轮电磁感应加热过程中的优化设计[J].钢铁,2020,55(10):120.
|
[22] |
武学泽,张国滨,王长松.连铸方坯感应补热过程的有限元分析[J].北京科技大学学报, 2006,28(4):348.
|
[23] |
Kee-Hyeon Cho. Coupled electro-magneto-thermal model for induction heating process of a moving billet[J]. International Journal of Thermal Science, 2012, 60:195.
|
[24] |
何浩,王强,肖红,等.方坯轧制在线感应加热数值模拟与优化设计[J].连铸, 2021(1):15.
|
[25] |
Pavel Karban, František Mach, Ivo Doležel. Modeling of rotational induction heating of nonmagnetic cylindrical billets[J]. Applied Mathematics and Computation,2013,219:7170.
|
[26] |
徐燕祎,张云虎,李清平,等.连铸恒温出坯电磁感应加热温度场分布于演变[J].连铸, 2018 (4):43.
|
[27] |
王学兵,张兴中,仇胜桃,等.直轧过程中铸坯感应补热技术的研究[J].热加工工艺, 2019,48(9):105.
|
[28] |
Renhart W, Stogner H, Preis K. Calculation of 3D eddy current problems by finite element method using either an electric or a magnetic vector potential[J]. IEEE Transactions on Magnetics, 2002, 24 (1): 122.
|
[29] |
黄达望.船用厚板成形感应加热工艺研究[D].上海:上海交通大学, 2020.
|
[30] |
HEN C H, HUANG K H. Finite element analysis of coupled electromagnetic and thermal fields with in a practical induction heating cooker[J]. International Journal of Applied Electromagnetics and Mechanics, 2008, 28 (4): 413.
|
[31] |
章熙民,朱彤,安青松,等.传热学[M].北京:中国建筑工业出版社, 2014.
|
[32] |
刘徐,蔡昌儒,赵亦希,等.电磁感应矫平工艺的多物理场耦合仿真研究[J/OL].上海交通大学学报:1-11[2022-05-23].
|
[1] |
XIAO Hong, WANG Pu, ZHENG Qing, LIU Shun, CHEN Xi-qing, ZHANG Jia-quan. Effect of roller-typed electromagnetic stirring and its coils location on solidification behavior of a slab casting[J]. Iron and Steel, 2023, 58(3): 79-88. |
[2] |
ZHAO Shuo, WANG Bing-shan, LÜ Jing-cai, LIN Wen, ZHU Shi-bin. Electromagnetic heating finite element simulation of 718 Ni alloy recycled by additive manufacturing[J]. CONTINUOUS CASTING, 2023, 42(2): 34-42. |
[3] |
CHENG Mingfei,WANG Min,YAO Cheng,BAO Yanping. Research on optimization of electromagnetic stirring process parameters of GCr15 steel bloom mold[J]. JOURNAL OF IRON AND STEEL RESEARCH , 2023, 35(1): 60-70. |
[4] |
LU Hai-biao, ZHANG Hui-qi, ZHONG Yun-bo, REN Wei-li, LEI Zuo-sheng. Simulation of flow field in a slab continuous casting with in-mold electromagnetic stirring[J]. CONTINUOUS CASTING, 2023, 42(1): 1-9. |
[5] |
LI Xiang-long, SUN Qun, QU Tian-peng, WANG De-yong. Effect of electromagnetic stirring on the aggregation and removement of liquid inclusions in continuous casting mold[J]. CONTINUOUS CASTING, 2023, 42(1): 10-17. |
[6] |
FAN Bin, LIU Li, ZHANG Shi-yu, LIU Ning-ning, LIU Xiao-ming, WANG Qiang. Gear steel 20CrMnTiH hardenability/macro segregation control[J]. CONTINUOUS CASTING, 2023, 42(1): 47-54. |
|
|
|
|