|
|
Mechanism and prevention of internal crack generation of 52CrMoV4 continuous casting slab for spring flat steel |
YANG Qi-jun1, YANG Geng-chao1, LIU Jian1, WANG Xu-ji1, ZHAO Yang2 |
1. Xiangtan Iron and Steel Co., Ltd.,Hunan Valin, Xiangtan 411101, Hunan, China; 2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, Liaoning, China |
|
|
Abstract The quality of continuous casting slab is directly related to the subsequent rolling process and the quality of medium and heavy plates. In this paper, the causes of the internal crack of 52CrMoV4 continuous casting slab for spring flat steel were analyzed by means of macrostructure inspection, microstructure observation and composition analysis. The results showed that the central segregation of Cr, Mn and Mo in the continuous casting slab caused martensitic transformation and large tensile stress during the cooling process, which was the main reason for the central crack of the 52CrMoV4 continuous casting slab. After increasing the purity of molten steel, reducing the pouring temperature and casting speed, increasing the electromagnetic stirring force as well as increasing the mass fraction of N during smelting, the crack defects in the center of the 52CrMoV4 steel slab were eliminated and the quality of the center of the slab was effectively improved. As a result, the quality of the center in the hot-rolled spring flat steel was good and fully met the requirements of customers.
|
Received: 11 May 2022
|
|
|
|
[1] |
李小兵, 董鑫, 邢炜伟, 等. 合金元素对Cr-Mo钢第二类回火脆性影响研究综述[J]. 钢铁, 2021, 56(3): 1.
|
[2] |
王利伟, 龚志华, 杨钢, 等. 热处理工艺对2Cr12NiMo1W1V叶片钢组织和性能的影响[J]. 钢铁, 2020, 55(7): 100.
|
[3] |
王刚, 路留成, 张悦, 等. 18CrNiMo7-6合金钢表面变质层循环特性[J]. 钢铁, 2022, 57(9): 156.
|
[4] |
刘维, 吴华杰, 李学, 等. 精炼渣成分对42CrMo钢洁净度的影响[J]. 连铸, 2022(5): 43.
|
[5] |
路殿华, 王振鹏, 张慧. 微合金化钢连铸坯边角部无缺陷生产技术开发[J]. 连铸, 2020(5): 66.
|
[6] |
郭亮亮, 王迎春, 徐国栋. 高氮高钼合金连铸表面裂纹原因分析[J]. 连铸, 2021(4): 26.
|
[7] |
郑丽丽, 彭军, 安胜利, 等. Mo、Ce对贝氏体钢第二相及组织与硬度的影响[J]. 中国冶金, 2021, 31(7): 50.
|
[8] |
殳黎平,朱施利,胡文豪,等. 含钼双相钢DP600相变研究和工艺实践[J]. 中国冶金, 2018, 28(6): 43.
|
[9] |
彭雄,肖亚,王绍斌,等. 钒氮合金化热轧抗震钢筋HRB400E产品开发[J]. 中国冶金, 2019, 29(1): 25.
|
[10] |
胡小龙,李英龙,刘德罡,等. Fe-12Mn-7Al-0.6C-(V)轻质钢力学行为[J]. 中国冶金, 2019, 29(2): 39.
|
[11] |
刘志强,杜浩,王少娜,等.钒铬还原渣资源化利用技术研究进展[J].河北冶金,2022(12):1.
|
[12] |
张剑,刘崇,刘勇,等.铌钒微合金化热成形钢的组织与性能[J].河北冶金,2022(7):18.
|
[13] |
杨浩,刘康康,韩鹏彪,等.低碳Nb-Ti-Cr-Mo微合金钢热变形行为及组织演变[J].河北冶金,2022(5):5.
|
[14] |
郑胜峰. 抗侧滚扭杆热处理工艺的改进[D]. 长沙: 湖南大学, 2017.
|
[15] |
焦立隆, 侯现军, 李绍杰, 等. 铁路机车用52CrMoV4弹簧失效分析[J]. 河北冶金, 2013(5): 129.
|
[16] |
公衍军, 杨欣, 吕士勇, 等. 几种高速列车用弹簧钢的材料性能对比研究[J]. 有色金属设计, 2021, 48(2): 107.
|
[17] |
付丽秦. 轨道交通用耐寒扭杆材料的研究[D]. 株洲: 湖南工业大学, 2017.
|
[18] |
Thangapazham P, Kumaraswamidhas L A, Muruganandam D. Evolution of 52CrMoV4 from 51CrV4 material to withstand field severity of parabolic leaf spring suspension in heavy-duty commercial vehicles [J]. Transactions of the Canadian Society for Mechanical Engineering, 2019, 43(3): 387.
|
[19] |
侯环宇, 黄艳新, 田志强, 等. 弹簧钢52CrMoV4连续冷却相变的组织变化[J]. 材料热处理学报, 2016, 37(9): 129.
|
[20] |
徐平伟, 梁益龙, 黄朝文. 奥氏体晶粒对52CrMoV4弹簧钢强韧性的影响[J]. 材料热处理学报, 2012, 33(1): 89.
|
[21] |
史显波, 赵连玉, 王威, 等. 几种高速列车用弹簧钢的脱碳敏感性[J]. 材料热处理学报, 2013, 34(7): 47.
|
[22] |
史显波, 赵连玉, 严伟, 等. 几种高速列车用弹簧钢的奥氏体晶粒长大倾向[J]. 钢铁, 2013, 48(3): 60.
|
[23] |
Savaidis A. Surface properties and fatigue life of stress peened leaves[J]. Materials Testing. 2012, 54(7/8): 529.
|
[24] |
罗扬,孙力,熊自柳,等.Mo对双相钢过冷奥氏体连续冷却转变的影响[J].河北冶金,2021(5):8.
|
[25] |
王程明,孙晓冉,相楠,等.Cr-Mn钢的室温旋转弯曲疲劳性能[J].河北冶金,2021(3):25.
|
[26] |
杨荣光,闫占辉,高宠光,等.VD炉氧脱碳工艺生产实践[J].钢铁,2021,56(4):39.
|
[27] |
刘彬,陈永洪,杨龙川,等.250 t钢包RH精炼脱碳动态控制实践[J].中国冶金,2020,30(5):70.
|
[28] |
上官方钦, 刘正东, 殷瑞钰. 钢铁行业“碳达峰”“碳中和”实施路径研究[J]. 中国冶金, 2021, 31(9): 15.
|
[29] |
姜均普. 钢铁生产短流程新技术-沙钢的实践(炼钢篇)[M]. 北京:冶金工业出版社, 2000.
|
[30] |
王胜利, 汪洪峰. 连铸板坯内部裂纹的形成机制及控制实践[J]. 连铸, 2019 (2): 53.
|
[31] |
许庆太, 杨撷光, 吴春雷, 等. 连铸坯内部裂纹缺陷的检验和分析[J]. 连铸, 2015(5): 1.
|
[32] |
杨淑云, 成国光. 板坯内部裂纹产生原因及控制[J]. 山西冶金, 2007 (3): 38.
|
[33] |
李晓滨, 丁桦, 唐正友. 轴承钢矩形坯内部裂纹的研究[J]. 钢铁研究学报, 2010, 22(10): 48.
|
[34] |
金立斌, 郑淑国, 朱苗勇. Fe-5Mn-2Al-0.15C中锰钢连铸凝固偏析及粒子析出行为[J]. 中国冶金, 2021, 31(12): 27.
|
[35] |
俞占扬, 张慧, 干勇, 等. 钢锭铸造过程中宏观偏析的研究进展[J]. 中国冶金, 2021, 31(5): 6.
|
[36] |
申文君, 成国光, 侯雨阳. 国内外2205双相钢连铸坯凝固组织及碳偏析分析[J]. 中国冶金, 2020, 30(11): 29.
|
[37] |
胡勇, 王力华, 林鸿泽, 等. 5%Si高硅奥氏体不锈钢元素偏析及均匀化处理[J]. 钢铁, 2022, 57(4): 114.
|
[38] |
夏金魁, 李相付, 曹龙琼, 等. Q235B连铸坯内部裂纹控制[J]. 连铸, 2016(3): 66.
|
[39] |
何宇明, 朱斌, 胡兵, 等. 降低连铸板坯内部裂纹改判率攻关实践[J]. 钢铁, 2001, 36(2): 23.
|
[40] |
安航航, 包燕平, 王敏, 等. 高拉速下37Mn5钢连铸圆坯内部质量控制研究[J]. 炼钢, 2017, 33(4): 39.
|
[41] |
刘亚丽, 张君平.ø350 mm ASTM4130连铸圆坯内部裂纹形成机制研究[J]. 连铸, 2018, (4): 46.
|
[42] |
黄星武. Q345D风电钢探伤不合格原因分析[J]. 钢铁研究, 2017, 45(6): 98.
|
[43] |
徐志刚, 刘杰光, 张迎涛. ø100 mm GCr15SiMn轴承钢棒内裂原因分析及对策[J]. 理化检验(物理分册), 2016, 52(6): 412.
|
[44] |
陶红标, 张慧, 范倚, 等. 冷却模式对0.1%C-5%Mn钢的铸坯组织及内部裂纹的影响[J]. 钢铁, 2015, 50(4): 53.
|
[45] |
王兴宇, 韩延申, 刘青, 等. 末端电磁搅拌对弹簧钢连铸坯内部质量的影响[J]. 钢铁, 2020, 55(5): 59.
|
[46] |
郭东伟, 侯自兵, 郭坤辉, 等. 连铸方坯中心线凝固行为波动现象及变化规律[J]. 钢铁, 2023, 58(1): 78.
|
[47] |
张立峰. 炼钢技术的发展历程和未来展望(Ⅱ)--炼钢的未来展望[J]. 钢铁, 2023, 58(1): 1.
|
[48] |
袁广鹏,吴伟勤.板坯连铸二冷电磁搅拌工艺优化[J].河北冶金,2021(2):32.
|
[49] |
韩毅华,刘少寒,朱立光.软接触电磁连铸结晶器保护渣冶金行为的研究进展[J].河北冶金,2021(5):1.
|
[1] |
JIANG Bo, FENG Yi-jie, WANG Zhi-lin, WANG Hai-long, MIAO Hong-sheng, LIU Ya-zheng. Research status of ferrite-pearlite non-quenched and tempered steel for automotive[J]. Iron and Steel, 2023, 58(3): 11-24. |
[2] |
GE Chen, ZHAO Hong-shan, ZHENG Lei, GU Chen, GUO Long-xin, DONG Han. Analysis on continuous cooling transformation and microstructure control of 900 MPa grade high strength steel[J]. Iron and Steel, 2023, 58(3): 128-134. |
[3] |
ZHANG Ya-bing, WANG Dong-xing, ZHAO Li, ZUO Xiao-tan, HUANG Yan, YANG Wei-yong. Solute distribution of 35CrMnSi structural alloy steel billet under the effect of PMO[J]. CONTINUOUS CASTING, 2023, 42(2): 78-83. |
[4] |
LI Hao, LI Xin, TAO Cheng-gang, WANG Guo-cai. Design characteristics and production practice of bloom caster for special steel[J]. CONTINUOUS CASTING, 2023, 42(2): 99-105. |
[5] |
ZHU Li-guang, MA Chen-yu, WANG Qi, ZHENG Ya-xu, XIAO Peng-cheng, GUO Zhi-hong. Effect of welding process on microstructure and properties of heat affected zone of marine steel[J]. Iron and Steel, 2023, 58(2): 137-146. |
[6] |
QIU Rongrong. Cause analysis of cracking on main cutter board of 22SiMn2TiB bucket[J]. PHYSICS EXAMINATION AND TESTING, 2023, 41(1): 51-55. |
|
|
|
|