To elucidate the formation mechanisms of burn-on sand and metal penetration during sand casting, some laboratory experiments were carried out at different temperatures (1813, 1833, 1853, and 1873 K) and holding time (20, 40, 60, and 90 min) to simulate the interaction between ZG13Cr9Mo1VNbN stainless steel and chromite sand. The results demonstrate that the defects primarily consist of a mixture of the liquid phase, chromite, and metal. The main components of the liquid phase are SiO2, MnO, MgO, Cr2O3, FeO, and Al2O3, and the formation of Cr2O3 through interfacial redox reactions has been discovered. The presence of a liquid phase plays a pivotal role in influencing burn-on sand and metal penetration. Interface reactions are prioritized, with burn-on sand maintaining a predominant influence. As the liquid phase quantity within the sand escalates, there is a corresponding incremental rise in the incidence of metal penetration. Even aminimal presence of the silicon element in steel can impact the liquid phase's formation. Moreover, the decomposition or dissolution of chromite sand is a significant factor in the development of burn-on sand and metal penetration. Thus, a thorough investigation into the conditions and contributing factors of this phenomenon is essential for its effective management and mitigation.
Abstract
To elucidate the formation mechanisms of burn-on sand and metal penetration during sand casting, some laboratory experiments were carried out at different temperatures (1813, 1833, 1853, and 1873 K) and holding time (20, 40, 60, and 90 min) to simulate the interaction between ZG13Cr9Mo1VNbN stainless steel and chromite sand. The results demonstrate that the defects primarily consist of a mixture of the liquid phase, chromite, and metal. The main components of the liquid phase are SiO2, MnO, MgO, Cr2O3, FeO, and Al2O3, and the formation of Cr2O3 through interfacial redox reactions has been discovered. The presence of a liquid phase plays a pivotal role in influencing burn-on sand and metal penetration. Interface reactions are prioritized, with burn-on sand maintaining a predominant influence. As the liquid phase quantity within the sand escalates, there is a corresponding incremental rise in the incidence of metal penetration. Even aminimal presence of the silicon element in steel can impact the liquid phase's formation. Moreover, the decomposition or dissolution of chromite sand is a significant factor in the development of burn-on sand and metal penetration. Thus, a thorough investigation into the conditions and contributing factors of this phenomenon is essential for its effective management and mitigation.
关键词
Heat-resistant steel /
Chromite sand /
Interfacial reaction /
Burn-on sand /
Metal penetration /
Temperature /
Holding time
{{custom_keyword}} /
Key words
Heat-resistant steel /
Chromite sand /
Interfacial reaction /
Burn-on sand /
Metal penetration /
Temperature /
Holding time
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Z.H. Bai, Z.J. Wang, L.H. Wang, V. Murugadoss, H. Liu, J.X. Zhang, Z.H. Guo, Sci. Adv. Mater. 11(2019) 817-823.
[2] S. Wang, C. Shi, Y. Liang, X. Wan, X. Zhu, Metall. Mater. Trans. B 53 (2022) 3095-3114.
[3] P.K. Bhowmik, K.Y. Suh, Int. [J]. Energy Environ. Eng. 12 (2021) No. 3, 365-381.
[4] C. Huang, X. Sheng, Energy 205 (2020) 118009.
[5] L. Yin, J. Xie, Energy 238 (2022) 121657.
[6] M. Ayar, V. Ayar, P. George, Mater. Today: Proc. 27(2020) 1422-1430.
[7] X. Chen, Y. Zhou, T. Jin, X. Sun, J. Mater. Sci.Technol. 32(2016) 177-181.
[8] L. Cheng, L. Zhang, Y. Ren, J. Zhang, J. Alloy. Compd. 845(2020) 155877.
[9] M. Holtzer, Foundryman 83 (1990) No. 3, 135-141.
[10] Q. Li, J. Song, D. Wang, Q. Yu, C. Xiao, Rare Met. 30(2011) 405-409.
[11] Z. Shi, W. Zheng, Y. Lu, G. Zhang, J. Shen, Chin. [J]. Mater. Res. 35 (2021) No. 4, 251-258.
[12] E.L.J.Kleynhans, J.P. Beukes, P.G. Van Zyl, P.H.I. Kestens, J.M. Langa, Miner. Eng. 34(2012) 55-62.
[13] M.N.V.Prasad, K. Shih, Environmental materials and waste: resource recovery and pollution prevention, Academic Press, New York, USA, 2016.
[14] J. Kabasele, D. Nyembwe, S. Afr. N.Ind. Eng. 32(2021) 65-74.
[15] S.C. Sun, B. Yuan, M.P. Liu, Trans. Nonferrous Met. Soc. China 22 (2012) 1884-1890.
[16] M. Bussolesi, G. Grieco, A. Eslami, A. Cavallo, Sustainability 12 (2020) 7096.
[17] T. Xu, Y. Xu, N. Liao, Y. Li, M. Nath, Materials 14 (2021) 6590.
[18] B. Yang, Z. Deng, M. Zhu, Metall. Mater. Trans. B 53 (2022) 3979-3991.
[19] Z. Deng, B. Glaser, M.A. Bombeck, S. Du, Steel Res. Int. 87(2016) 484-493.
[20] Z. Deng, B. Glaser, M.A. Bombeck, S. Du, Steel Res. Int. 87(2016) 921-929.
[21] R.L. Naro, J.F. Wallace, Trans. AFS 75 (1967) 741.
[22] M. Holtzer, E. Urbaniec, A. Janas, A. Dzieja, Trans. Jpn. Foundrymens Soc. 12(1993) 7.
[23] Y. Ueda, K. Tani,Trans. Iron Steel Inst. Jpn. 27 (1987) No. 3, 205-210.
[24] K. Tani, Y. Ueda, S. Mori, ISIJ Int. 27(1987) 197-204.
[25] J.L. Lewandowski, M. Holtzer, Cast Met. 8(1995) 159-165.
[26] Y. Zi, J. Meng, C. Zhang, Y. Yang, Y. Zhou, Y. Ding, J. Alloy. Compd. 789(2019) 472-484.
[27] N. Eustathopoulos, M.G. Nicholas, B. Drevet, Wettability at high temperatures, Elsevier, Netherlands, 1999.
[28] W. Yan, A. Schmidt, S. Dudczig, T. Wetzig, Y. Wei, Y. Li, S. Schaffo¨ner, C.G. Aneziris, J. Eur. Ceram.Soc. 38(2018) 2164-2178.
[29] J.E. Kanyo, S. Schaffo¨ner, R.S. Uwanyuze, K.S. Leary, J. Eur. Ceram.Soc. 40(2020) 4955-4973.
[30] J.X. Chen, Data manual of common steel making charts, Metallurgical Industry Press, Beijing, China, 2010.
[31] F.M. Shen, Physical chemistry of metallurgy, Higher Education Press, Beijing, China, 2017.
[32] Y. Li, C.Y. Chen, G.Q. Qin, Z.H. Jiang, M. Sun, K. Chen, Int. J. Miner. Metall. Mater. 27(2020) 1083-1099.
[33] D. Senk, K. Christmann, S. Geimer, D. Rzehak, Steel Res. Int. 87(2016) 107-111.
[34] X.G. Huang, Theory of iron and steel metallurgy, 4th Ed., Metallurgical Industry Press, Beijing, China, 2013.
[35] H. Itoh, M. Hino, S. Ban-Ya, Metall. Mater. Trans. B 28 (1997) 953-956.
[36] J.J. Pak, J.O. Jo, S.I. Kim, W.Y. Kim, T.I. Chung, S.M. Seo, J.H. Park, D.S. Kim, ISIJ Int. 47(2007) 16-24.
[37] Z. Ma, R. Ni, W. Cheng, S. Wei,Steel Res. Int. 64 (1993) No. 3, 148-152.
[38] S. Wei, Steel Res. 63(1992) 159-165.
[39] M. Sun, Z. Jiang, Y. Li, C. Chen, Y. Ma, S. Ma, T. Li, H. Liu, Ceram. Int. 49(2023) 21903-21915.
[40] Y. Zi, J. Meng, C. Zhang, Y. Zhou, Y. Ding, Acta Metall. Sin. Engl. Lett. 33(2020) 1021-1030.
[41] O. Demir, R.H. Eric, High Temp. Mater. Process. 32(2013) 255-263.
[42] Z. Wang, I. Sohn, Ceram. Int. 47(2021) 10918-10926.
[43] V.D. Tathavakar, M.P. Antony, A. Jha, Metall. Mater. Trans. B 36 (2005) 75-84.
[44] S.S. Li, L.Z. Kong, X.M. Zang, Steel Res. Int. 95(2023) 2300452.
[45] B.E. Brooks, C. Beckermann, V.L. Richards, Int. J. Cast Met.Res. 20(2007) 177-190.
[46] K.D. Xu, Z.M. Ren, C.J. Li, Rare Met. 33(2014) 111-126.
[47] F. Wang, F. Li, B. He, B. Sun, Ceram. Int. 40(2014) 479-486.
[48] H. Yu, Foundry technology, China Machine Press, Beijing, China, 2019.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}