Effect of rolling schedules on ridging resistance of ultra-thin ferritic stainless steel foil

Jing-wei Zhao, Qing-zhong Xie, Li-nan Ma, Cun-long Zhou, Zheng-yi Jiang, Xi Liao, Xiao-guang Ma

钢铁研究学报(英文版) ›› 2025, Vol. 32 ›› Issue (1) : 198-214.

PDF(5027 KB)
欢迎访问《钢铁研究学报(英文版)》官方网站!今天是 2025年8月1日 星期五
PDF(5027 KB)
钢铁研究学报(英文版) ›› 2025, Vol. 32 ›› Issue (1) : 198-214. DOI: 10.1007/s42243-024-01258-7
ORIGINAL PAPERS

Effect of rolling schedules on ridging resistance of ultra-thin ferritic stainless steel foil

  • Jing-wei Zhao1,2,3, Qing-zhong Xie1,2,3, Li-nan Ma4, Cun-long Zhou4, Zheng-yi Jiang5, Xi Liao6, Xiao-guang Ma1,2,3
作者信息 +

Effect of rolling schedules on ridging resistance of ultra-thin ferritic stainless steel foil

  • Jing-wei Zhao1,2,3, Qing-zhong Xie1,2,3, Li-nan Ma4, Cun-long Zhou4, Zheng-yi Jiang5, Xi Liao6, Xiao-guang Ma1,2,3
Author information +
文章历史 +

摘要

The effect of rolling schedules on the ridging resistance of ultra-thin ferritic stainless steel (FSS) 430 foil was evaluated by studying the microstructure and texture. The results show that specimens processed with three-pass cold rolling under the reductions of 40%, 40% and 31%, respectively, exhibit improved ridging resistance owing to the microstructural refinement and the texture structure optimization. A nearly 40% reduction of ridging height can be achieved using the proposed rolling schedule compared to the other two rolling schedules. In addition, the effect of annealing temperature after cold rolling on the ridging resistance of FSS 430 foil is also found to be crucial, and an optimal annealing temperature of 900℃ is obtained for FSS 430 foil with high ridging resistance. Overall, the improvement in the ridging resistance of FSS 430 foil can be attributed to the reduction in the fraction of {001}<110> and {114}<110> components by optimization of the rolling and annealing processes.

Abstract

The effect of rolling schedules on the ridging resistance of ultra-thin ferritic stainless steel (FSS) 430 foil was evaluated by studying the microstructure and texture. The results show that specimens processed with three-pass cold rolling under the reductions of 40%, 40% and 31%, respectively, exhibit improved ridging resistance owing to the microstructural refinement and the texture structure optimization. A nearly 40% reduction of ridging height can be achieved using the proposed rolling schedule compared to the other two rolling schedules. In addition, the effect of annealing temperature after cold rolling on the ridging resistance of FSS 430 foil is also found to be crucial, and an optimal annealing temperature of 900℃ is obtained for FSS 430 foil with high ridging resistance. Overall, the improvement in the ridging resistance of FSS 430 foil can be attributed to the reduction in the fraction of {001}<110> and {114}<110> components by optimization of the rolling and annealing processes.

关键词

Ferritic stainless steel foil / Ridging / Cold rolling / Annealing / Microstructure / Texture

Key words

Ferritic stainless steel foil / Ridging / Cold rolling / Annealing / Microstructure / Texture

图表

引用本文

导出引用
Jing-wei Zhao, Qing-zhong Xie, Li-nan Ma, . Effect of rolling schedules on ridging resistance of ultra-thin ferritic stainless steel foil[J]. 钢铁研究学报(英文版), 2025, 32(1): 198-214 https://doi.org/10.1007/s42243-024-01258-7
Jing-wei Zhao, Qing-zhong Xie, Li-nan Ma, et al. Effect of rolling schedules on ridging resistance of ultra-thin ferritic stainless steel foil[J]. Journal of Iron and Steel Research International, 2025, 32(1): 198-214 https://doi.org/10.1007/s42243-024-01258-7

参考文献

[1] M. Sarkari Khorrami, M. Ali Mostafaei, H. Pouraliakbar, A.H. Kokabi, Mater. Sci. Eng. A 608 (2014) 35-45.
[2] J. Fu, F. Li, J. Sun, Y. Wu, Mater. Sci. Eng. A 738 (2018) 335-343.
[3] X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, L. Jiang, Mater. Des. 65(2015) 682-689.
[4] S. Vigneshwaran, R. Madhavan, G. Yoganjaneyulu, R. Narayanasamy, Mater. Today Proc. 46(2021) 51-60.
[5] L. Tanure, C.M.de Alcântara, D.B. Santos, T.R. de Oliveira, B.M. Gonzalez, K. Verbeken, J. Mater. Res. Technol. 8(2019) 4048-4065.
[6] C. Pradeep Raja, T. Ramesh, Eng. Sci. Technol. Int. J. 24(2021) 556-570.
[7] M.T. Tran, H. Wang, H.W. Lee, D.K. Kim, Int. J. Plasticity 154 (2022) 103298.
[8] H.J. Bong, J. Lee, Int. J. Mech. Sci. 191(2021) 106066.
[9] E. Taban, E. Kaluc, A. Dhooge, Mater. Des. 30(2009) 4236-4242.
[10] X. Sun, L. Ma, J. Li, M. Zhang, X. Ma, Int. J. Adv. Manuf. Technol. 123(2022) 1159-1173.
[11] X. Ma, J. Zhao, W. Du, Z. Jiang, Int. J. Adv. Manuf. Technol. 107(2020) 4823-4836.
[12] I. Jung, J. Mola, D. Chae, B.C.De Cooman, Steel Res. Int. 81(2010) 1089-1096.
[13] P. Modak, S. Patra, R. Mitra, D. Chakrabarti, Metall. Mater. Trans. A 49 (2018) 2219-2234.
[14] S. Kodukula, T. Ohligschläger, D. Porter, ISIJ Int. 61(2021) 380-386.
[15] S. Patra, L.K. Singhal, Mater. Sci. Appl. 4(2013) 70-76.
[16] S. Kodukula, P. Karjalainen, D. Porter, ISIJ Int. 61(2021) 975-984.
[17] S. Patra, A. Ghosh, J. Sood, L.K. Singhal, A.S. Podder, D. Chakrabarti, Mater. Des. 106(2016) 336-348.
[18] C. Zhang, Z. Liu, G. Wang, J. Mater. Process.Technol. 211(2011) 1051-1059.
[19] C. Zhang, Y. Xu, L. Zhang, X. Zhou, Steel Res. Int. 91(2020) 2000109.
[20] K.M. Lee, J. Park, S. Kim, S. Park, M.Y. Huh,Microsc. Microanal. 19 (2013) No. S5, 17-20.
[21] X. Ma, J. Zhao, W. Du, X. Zhang, L. Jiang, Z. Jiang, Mater. Sci. Eng. A 685 (2017) 358-366.
[22] D.G. Rodrigues, C.M.de Alcântara, T.R. de Oliveira, B.M. Gonzalez, J. Mater. Res. Technol. 8(2019) 4151-4162.
[23] A. Després, J.D. Mithieux, C.W. Sinclair, Acta Mater. 219(2021) 117226.
[24] F. Gao, Z.Y. Liu, H.T. Liu, G.D. Wang, J. Iron Steel Res.Int. 20(2013) 31-38.
[25] J.A. Wang, Y. Chen, L. Luo, J. Chen, Y. He, J. Mater. Eng.Perform. 30(2021) 3342-3351.
[26] S. Kodukula, H. Kokkomäki, E. Puukko, D. Porter, J. Kömi, Steel Res. Int. 92(2021) 2000695.
[27] X. Ma, J. Zhao, W. Du, X. Zhang, Z. Jiang, Mater. Charact. 137(2018) 201-211.
[28] J. Park, S.H.Park, Metal(2012) 23-25.
[29] G. Cai, C. Li, D. Wang, Y. Zhou, Procedia Manuf. 15(2018) 1619-1625.
[30] C.Z. Lu, Z. Fang, J.Y. Li, Mater. Charact. 135(2018) 257-264.
[31] M.Y. Huh, J.H. Lee, S.H. Park, O. Engler, D. Raabe, Steel Res. Int. 76(2005) 797-806.
[32] X. Sun, X. Ma, J. Li, L. Ma, M. Zhang, J. Zhao, Int. J. Adv. Manuf. Technol. 126(2023) 4225-4237.
[33] H.J. Shin, J.K. An, S.H. Park, D.N. Lee, Acta Mater. 51(2003) 4693-4706.
[34] C.S.da Costa Viana, A.L. Pinto, F.S. Candido, R.G. Matheus, Mater. Sci. Technol. 22(2006) 293-300.
[35] Y. Bai, T. He, Y. Liu, Mater. Charact. 137(2018) 142-150.
[36] M.Y. Huh, O. Engler, Mater. Sci. Eng. A 308 (2001) 74-87.
[37] F. Gao, F.X. Yu, R.D.K.Misra, X.J. Zhang, S.M. Zhang, Z.Y. Liu, J. Mater. Eng. Perform. 24(2015) 3862-3880.
[38] A.A. Gazder, M. Sánchez-Araiza, J.J. Jonas, E.V. Pereloma, Acta Mater. 59(2011) 4847-4865.
[39] D.N. Lee, Mater. Sci.Forum 449-452(2004) 1-6.
[40] J.J. Nah, H.G. Kang, M.Y. Huh, O. Engler, Scripta Mater. 58(2008) 500-503.
[41] H. Inagaki, ISIJ Int. 34(1994) 313-321.
[42] C. Zhang, Y. Xu, L. Zhang, Y. Gu, MATEC Web Conf. 190(2018) 11007.
[43] X. Ma, J. Zhao, W. Du, X. Zhang, L. Jiang, Z. Jiang, J. Mater. Res.Technol. 8(2019) 2041-2051.
[44] J.L. Bair, E.R. Homer, Acta Mater. 162(2019) 10-18.
[45] Y. Hayakawa, M. Muraki, J.A. Szpunar, Acta Mater. 46(1998) 1063-1073.
[46] Y. Hayakawa, J.A. Szpunar, G. Palumbo, P. Lin, J. Magn. Magn.Mater. 160(1996) 143-144.
[47] D.N.F.Muche, M.A.T.Marple, S. Sen, R.H.R. Castro, Acta Mater. 149(2018) 302-311.
[48] P.K. Rai, S. Shekhar, K. Mondal, Corros. Sci. 138(2018) 85-95.
[49] F. Najafkhani, H. Mirzadeh, M. Zamani, Met. Mater. Int. 25(2019) 1039-1046.
[50] S.H. Hong, D.N. Lee, ISIJ Int. 42(2002) 1278-1287.
[51] O. Engler, M.Y. Huh, C.N. Tomé, Metall. Mater. Trans. A 36 (2005) 3127-3139.

PDF(5027 KB)

Accesses

Citation

Detail

段落导航
相关文章

/