Microstructure and mechanical properties of transient liquid phase bonding Ti3SiC2 ceramic to SUS430 steel using an Al interlayer

Jing-xiang Zhao, Xi-chao Li, Jing Shi, Qiang Cheng, Bin Xu, Ming-yue Sun, Li-li Zheng

钢铁研究学报(英文版) ›› 2024, Vol. 31 ›› Issue (10) : 2475-2488.

PDF(5213 KB)
欢迎访问《钢铁研究学报(英文版)》官方网站!今天是 2025年7月31日 星期四
PDF(5213 KB)
钢铁研究学报(英文版) ›› 2024, Vol. 31 ›› Issue (10) : 2475-2488. DOI: 10.1007/s42243-024-01265-8

Microstructure and mechanical properties of transient liquid phase bonding Ti3SiC2 ceramic to SUS430 steel using an Al interlayer

  • Jing-xiang Zhao1, Xi-chao Li1,2, Jing Shi3, Qiang Cheng3, Bin Xu4,5, Ming-yue Sun4,5, Li-li Zheng1,2
作者信息 +

Microstructure and mechanical properties of transient liquid phase bonding Ti3SiC2 ceramic to SUS430 steel using an Al interlayer

  • Jing-xiang Zhao1, Xi-chao Li1,2, Jing Shi3, Qiang Cheng3, Bin Xu4,5, Ming-yue Sun4,5, Li-li Zheng1,2
Author information +
文章历史 +

摘要

Ti3SiC2 ceramic and SUS430 ferritic stainless steel were welded by the transient liquid phase (TLP) diffusion bonding method using an Al interlayer at 850-1050 °C in vacuum. The evolution of phase and morphology at the interface and bonding strength were systematically investigated. The results show that Ti3SiC2 and SUS430 were well bonded at 900-950 °C. Three reaction zones were observed at the interface. At the joint interface area adjacent to alloy, the alloy completely reacted with liquid Al to form Al86Fe14. At Ti3SiC2/Al interface, Ti and Si diffused outward from Ti3SiC2 into the molten Al to form Fe3Al + Al5FeSi + TiAl3 zone. Adjacent to Ti3SiC2 matrix, Ti3Si(Al)C2 + TiCx zone was formed by the loss of Si. The evolution mechanism of TLP-bonded joints was discussed based on the interface microstructure and product phases. In addition, the tensile strength of the joint increased with increasing bonding temperature. The corre- sponding maximum value of 59.7 MPa was obtained from SUS430/Al (10 lm)/Ti3SiC2 joint prepared at 950 °C.

Abstract

Ti3SiC2 ceramic and SUS430 ferritic stainless steel were welded by the transient liquid phase (TLP) diffusion bonding method using an Al interlayer at 850-1050 °C in vacuum. The evolution of phase and morphology at the interface and bonding strength were systematically investigated. The results show that Ti3SiC2 and SUS430 were well bonded at 900-950 °C. Three reaction zones were observed at the interface. At the joint interface area adjacent to alloy, the alloy completely reacted with liquid Al to form Al86Fe14. At Ti3SiC2/Al interface, Ti and Si diffused outward from Ti3SiC2 into the molten Al to form Fe3Al + Al5FeSi + TiAl3 zone. Adjacent to Ti3SiC2 matrix, Ti3Si(Al)C2 + TiCx zone was formed by the loss of Si. The evolution mechanism of TLP-bonded joints was discussed based on the interface microstructure and product phases. In addition, the tensile strength of the joint increased with increasing bonding temperature. The corre- sponding maximum value of 59.7 MPa was obtained from SUS430/Al (10 lm)/Ti3SiC2 joint prepared at 950 °C.

关键词

Ti3SiC2ceramic / SUS430 ferritic stainless steel / Transient liquid phase bonding technique / Microstructure / Mechanical property

Key words

Ti3SiC2ceramic / SUS430 ferritic stainless steel / Transient liquid phase bonding technique / Microstructure / Mechanical property

图表

引用本文

导出引用
Jing-xiang Zhao, Xi-chao Li, Jing Shi, . Microstructure and mechanical properties of transient liquid phase bonding Ti3SiC2 ceramic to SUS430 steel using an Al interlayer[J]. 钢铁研究学报(英文版), 2024, 31(10): 2475-2488 https://doi.org/10.1007/s42243-024-01265-8
Jing-xiang Zhao, Xi-chao Li, Jing Shi, et al. Microstructure and mechanical properties of transient liquid phase bonding Ti3SiC2 ceramic to SUS430 steel using an Al interlayer[J]. Journal of Iron and Steel Research International, 2024, 31(10): 2475-2488 https://doi.org/10.1007/s42243-024-01265-8

参考文献

[1] Q. Tan, W. Zhuang, M. Attia, R. Djugum, M. Zhang, J. Mater. Sci.Technol. 131(2022) 30-47.
[2] H.Y. Li, Y. Tian, D. Wan, Y. Bao, Y. Zhou, Int. J. Appl. Ceram. Technol. 18(2021) 1213-1221.
[3] L.L. Zheng, X.C. Li, W.B. Guan, M.S. Li, S.L. Wei, Y.H. Qian,J.J. Xu, Z.Q. Dai, T.Z. Zhang, H.X. Zhang, Int. J. Hydrog. Energy 46 (2021) 9503-9513.
[4] Z.M. Sun, Int. Mater. Rev. 56(2011) 143-166.
[5] W. Hu, Z. Huang, Y. Wang, X. Li, H. Zhai, Y. Zhou, L. Chen, J. Alloy. Compd. 856(2021) 157313.
[6] M.W. Barsoum, Prog. Solid State Chem. 28(2000) 201-281.
[7] Y. Zou, Z. Sun, S. Tada, H. Hashimoto, J. Alloy. Compd. 461(2008) 579-584.
[8] L.L. Zheng, Q.S. Hua, X.C. Li, M.S. Li, Y.H. Qian, J.J. Xu, J. Zhang, Z. Zheng, Z. Dai, H. Zhang, T. Zhang, Corros. Sci. 140(2018) 374-378.
[9] X.C. Li, Z.K. Wang, S.L. Wei, L. Zhao, J.J. Xu, T. He, L.L. Zheng, Int. J. Hydrog. Energy 63 (2024) 19-27.
[10] X.C. Li, Y.C. Chi, S.L. Wei, X.W. Sun, J.X. Zhao, Q.Q. Hou, K. Fu, Z.Q. Dai, L.L. Zheng, Materials 17 (2024) 632 1-12.
[11] J. Zhang, K. Chen, X. Sun, M. Liu, X. Hu, L. He, Z. Huang, Z. Chai, X. Xiao, Y. Song, Q. Huang, ACS Appl. Mater. Interfaces 13 (2021) 5645-5651.
[12] C. Zhang, X. Hu, T. Sercombe, Q. Li, Z. Wu, P. Lu, Acta Mater. 145(2018) 41-48.
[13] F.Y. Lu, H.Y. Wan, X. Ren, L.M. Huang, H.L. Liu, X. Yi, J. Iron Steel Res.Int. 29(2022) 1322-1333.
[14] C.S. Liu, F.K. Li, H. Zhang, J. Li, Y. Wang, Y.Y. Lu, L. Xiong,H.W. Ni, J. Iron Steel Res.Int. 30(2023) 1511-1523.
[15] Z.X. Dai, S.L. Jiang, L.K. Ning, X.D. Xu, S. Li, D.L. Duan, J. Iron Steel Res.Int. 30(2023) 2541-2556.
[16] B.H. Wang, B. Xiao, P.Y. Pan, J. Liu, N.Q. Zhang, Journal of Chinese Society for Corrosion and Protection 43 (2023) No. 1, 6-12.
[17] H. Zhu, S. Geng, G. Chen, F. Wang, J. Alloy. Compd. 782(2019) 100-109.
[18] J.Y. Long, T.T. Zhao, M.Y. Yuan, Y.T. Yang, J. Iron Steel Res.Int. 29(2022) 1485-1494.
[19] C. Goebel, R. Berger, C. Bernuy-Lopez, J. Westlinder, J.E. Svensson, J. Froitzheim, J. Power Sources 449 (2020) 227480.
[20] K.H. Tan, H.A. Rahman, H. Taib, Int. J. Hydrog. Energy 44 (2019) 30591-30605.
[21] J. Li, B. Zhang, D. Zhang, Expert Syst. Appl. 89(2017) 31-40.
[22] Y. Zhang, Y. Chen, D. Yu, D. Sun, H. Li, J. Mater. Res.Technol. 9(2020) 16214-16236.
[23] Y.Y. Peng, C. Li, Q.Y. Guo, H.J. Li, Y.C. Liu, J. Iron Steel Res.Int. 30(2023) 2328-2339.
[24] J. Cao, J. Liu, X. Song, X. Lin, J. Feng, Mater. Des. 1980 2015 56(2014) 115-121.
[25] S. Fontana, S. Chevalier, G. Caboche, J. Power Sources 193 (2009) 136-145.
[26] Y. Zhang, Z.Y. He, D. Feng, J. Iron Steel Res. 19 (2007) No. 2, 1-4+34.
[27] J.K. Liu, J. Cao, X.G. Song, Y.F. Wang, J.C. Feng, Mater. Des. 57(2014) 592-597.
[28] Y.H. Xia, Y. Wang, Z.W. Yang, D.P. Wang, Ceram. Int. 44(2018) 11869-11877.
[29] Q. Cheng, L. Zheng, X. Li, B. Xu, M. Sun, J. Shi, Z. Dai, T. Zhang, H. Zhang, Ceram. Int. 48(2022) 4484-4496.
[30] X.H. Yin, M.S. Li, Y.C. Zhou, J. Eur. Ceram.Soc. 27(2007) 3539-3544.
[31] Y. Wang, Y.H. Xia, Z.W. Yang, D.P. Wang, Ceram. Int. 44(2018) 22154-22164.
[32] S.Y. Niu, X.F. Wu, Z.W. Yang, Y. Wang, D.P. Wang, Ceram. Int. 47(2021) 130-137.
[33] Y. Wang, X.F. Wu, Z.W. Yang, Y.H. Xia, D.P. Wang, Ceram. Int. 45(2019) 20900-20909.
[34] Z. Zhong, T. Hinoki, H.C. Jung, Y.H. Park, A. Kohyama, Mater. Des. 31(2010) 1070-1076.
[35] M. Bednarz, S. Molin, M. Bobruk, M. Stygar, E. Długoń, M.
Sitarz, T. Brylewski, Mater. Chem. Phys. 225(2019) 227-238.
[36] Q. Wang, G.Q. Chen, K. Wang, X.S. Fu, W.L. Zhou, Mater. Sci. Eng. A 756 (2019) 149-155.
[37] Q. Wang, G.Q. Chen, K. Wang, X.S. Fu, W.L. Zhou, Scripta Mater. 178(2020) 493-497.
[38] J. Zhang, W. Liu, Y. Jin, S. Wu, T. Hu, Y. Li, X. Xiao, J. Alloy. Compd. 738(2018) 1-9.
[39] L.L. Zheng, Q.S. Hua, X.C. Li, M.S. Li, Y.H. Qian, J.J. Xu, Z.Q. Dai, T. Chen, J. Zhang, H. Zhang, RSC Adv. 7(2017) 42350-42356.
[40] X. Wang, Z. Chao, C. Qiang, L.Z. Qiang, Z.D. Tong, Z.W. Wen, Hot Working Technology 45 (2016) No. 14, 89-92+96.
[41] Y. Zhou, W. Gu, Z. Für Met. 95(2004) 50-56.
[42] W.L. Gu, Y.C. Zhou, Trans. Nonferrous Met. Soc. China 16 (2006) 1281-1288.
[43] P. Eklund, J. Rosen, P.O.A˚ .Persson, J. Phys. D Appl.Phys. 50(2017) 113001.
[44] L. Garcia-Fresnillo, L. Niewolak, W.J. Quadakkers, G.H. Meier, Oxid. Met. 89(2018) 61-80.
[45] Y.S. Yin, J.D. Zhang, J. Li, Y. Chen, Appl. Surf. Sci. 221(2004) 384-391.
[46] S.F. Wang, H.C. Lu, Y.X. Liu, Y.F. Hsu, Z.Y. Liu, Ceram. Int. 43(2017) S613-S620.
[47] P.P. Wang, P.Q. Chen, Q.Q. Fang, M. Zhang, T. Hong, J.G. Cheng, Powder Metallurgy Technology 39 (2021) No. 2, 99-106.
[48] D.T. Wan, L.F. He, L.L. Zheng, J. Zhang, Y.W. Bao, Y.C. Zhou, J. Am. Ceram.Soc. 93(2010) 1749-1753.
[49] W. Ren, M. Liu, W. Zhang, Y. Yang, X. Wang, S. Zhou, J. Du, J. Alloy. Compd. 897(2022) 163210.
[50] Q. Zheng, T. Liu, J.B. Wei, R. Luo, Y.M. Zhou, H.N. Ding, L.L. Chen, D. Zhang, X.N. Cheng, J. Iron Steel Res.Int. 30(2023) 2566-2581.

PDF(5213 KB)

30

Accesses

0

Citation

Detail

段落导航
相关文章

/