Effect of isothermal martensite and bainite transformation on microstructure and properties in a medium-carbon high-strength Q&P steel

Ya-jun Liu, Jun-yu Tian, Man Liu, Xiao-long Gan, Sheng Liu, Guang Xu

Journal of Iron and Steel Research International ›› 2024, Vol. 31 ›› Issue (12) : 3095-3108.

PDF(5111 KB)
Welcome to visit Journal of Iron and Steel Research International, July 29, 2025
PDF(5111 KB)
Journal of Iron and Steel Research International ›› 2024, Vol. 31 ›› Issue (12) : 3095-3108. DOI: 10.1007/s42243-024-01216-3
ORIGINAL PAPERS

Effect of isothermal martensite and bainite transformation on microstructure and properties in a medium-carbon high-strength Q&P steel

Author information +
History +

Abstract

The effect of the amount of isothermal martensite and bainite on the microstructure and properties in a medium-carbon quenching and partitioning (Q&P) steel was investigated by designing the different Q&P treatment parameters. The results show that the amount of isothermal martensite increased gradually with the increase in quenching time. The increase in isothermal martensite amount improved the product of strength and elongation (PSE) of Q&P steels. In addition, the increase in carbides amount and the recovery in prior martensite with longer partitioning time led to an increase in PSE first and then, a decrease. It implies that a higher PSE could be obtained by the selection of a suitable partitioning time. Furthermore, the effect of bainite transformation during partitioning on PSE was investigated by designing the different partitioning temperatures, including 300, 400 (below bainite starting temperature, Bs) and 480 °C (above Bs). The results show that compared with the samples partitioned at temperature above Bs, the bainite transformation was only detected when the samples were partitioned at temperature below Bs. The bainite transformation amount increased with the decreasing partitioning temperature, leading to the inhibition of carbides precipitation and more stable RA and thus, resulting in the highest PSE.

Key words

Q&P steel / Isothermal martensite / Bainite transformation / Carbide / Mechanical property

Cite this article

Download Citations
Ya-jun Liu, Jun-yu Tian, Man Liu, et al. Effect of isothermal martensite and bainite transformation on microstructure and properties in a medium-carbon high-strength Q&P steel[J]. Journal of Iron and Steel Research International, 2024, 31(12): 3095-3108 https://doi.org/10.1007/s42243-024-01216-3

References

[1] J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Curr. Opin. Solid State Mater.Sci. 8(2004) 219-237.
[2] J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. De Cooman, D.V. Edmonds, Metall. Mater. Trans. A 42 (2011) 3591-3601.
[3] Y.J. Liu, X.L. Gan, W. Liang, G. Xu, J.H. Qi, M. Liu, Materials 16 (2023) 3575.
[4] M. Liu, J.H. Hu, M. Kern, B. Lederhaas, G. Xu, C. Bernhard, Trans. Indian Inst. Met. 74(2021) 3265-3272.
[5] M. Liu, J. Wang, Q. Zhang, H. Hu, G. Xu, Met. Mater. Int. 27(2021) 2473-2480.
[6] A. Zinsaz-Borujerdi, A. Zarei-Hanzaki, H.R. Abedi, M. Karam- Abian, H. Ding, D. Han, N. Kheradmand, Mater. Sci. Eng. A 725 (2018) 341-349.
[7] J. Speer, D.K. Matlock, B.C.De Cooman, J.G. Schroth, Acta Mater. 51(2003) 2611-2622.
[8] J. Tian, G. Xu, Z. Jiang, H. Hu, M. Zhou, Met. Mater. Int. 24(2018) 1202-1212.
[9] G. Xu, F. Liu, L. Wang, H. Hu, Scripta Mater. 68(2013) 833-836.
[10] S. Golchin, B. Avishan, S. Yazdani, Mater. Sci. Eng. A 656 (2016) 94-101.
[11] Q. Li, X. Huang, W. Huang, Mater. Sci. Eng. A 662 (2016) 129-135.
[12] Y. Toji, G. Miyamoto, D. Raabe, Acta Mater. 86(2015) 137-147.
[13] M.C. Somani, D.A. Porter, L.P. Karjalainen, R.D.K. Misra, Metall. Mater. Trans. A 45 (2014) 1247-1257.
[14] D.H. Kim, J.G. Speer, H.S. Kim, B.C. De Cooman, Metall. Mater. Trans. A 40 (2009) 2048-2060.
[15] J. Guan, M. Liu, J. Tian, Z. Chen, G. Xu, Trans. Indian Inst. Met. 74(2021) 3265-3272.
[16] J. Tian, G. Xu, Z. Jiang, H. Hu, Q. Yuan, X. Wan, Met. Mater. Int. 26(2020) 961-972.
[17] I. Miettunen, S. Ghosh, M.C. Somani, S. Pallaspuro, J. Kömi, J. Mater. Res.Technol. 11(2021) 1045-1060.
[18] M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59(2011) 6059-6068.
[19] F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Acta Mater. 104(2016) 72-83.
[20] H.Y. Li, X.W. Lu, X.C. Wu, Y.A. Min, X.J. Jin, Mater. Sci. Eng. A 527 (2010) 6255-6259.
[21] S. Yan, X. Liu, W.J. Liu, H. Lan, H. Wu, Mater. Sci. Eng. A 640 (2015) 137-146.
[22] M. Mohammadi Zahrani, M. Ketabchi, E. Ranjbarnodeh, J. Mater. Res.Technol. 22(2023) 2806-2818.
[23] S. Pashangeh, M. Somani, S.S.Ghasemi Banadkouki, ISIJ Int. 61(2021) 442-451.
[24] Q.G. Li, Y.N. Zhang, W.D. Li, X.F. Huang, W.G. Huang, J. Mater. Eng.Perform. 29(2020) 32-41.
[25] C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527 (2010) 3442-3449.
[26] M. Zhou, G. Xu, L. Wang, B. He, Trans. Indian Inst. Met. 70(2017) 1447-1453.
[27] Y. Liu, X. Gan, S. Wang, H. Yang, Y. Li, G. Xu, Steel Res. Int. 94(2023) 2200840.
[28] F.G. Caballero, M.J. Santofimia, C. García-Mateo, J. Chao, C. García de Andrés, Mater.Des. 30(2009) 2077-2083.
[29] H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, R.W. Reed, Mats. Sci. Tech. 7(1991) 686-698.
[30] A. Lindström, Austempered high silicon steel: investigation of wear resistance in a carbide free microstructure, Luleå University of Technology, Luleå, Sweden, 2006.
[31] J. Tian, G. Xu, L. Wang, M. Zhou, H. Hu, Trans. Indian Inst. Met. 71(2018) 185-194.
[32] M. Liu, G. Xu, J.Y. Tian, Q. Yuan, X. Chen, Int. J. Miner. Metall. Mater. 27(2020) 340-346.
[33] J. Tian, G. Xu, H. Hu, X. Wang, H. Zurob, J. Mater. Res.Technol. 9(2020) 13594-13606.
[34] A. Navarro-López, J. Hidalgo, J. Sietsma, M.J. Santofimia, Mater. Sci. Eng. A 735 (2018) 343-353.
[35] M. Saeglitz, G. Krauss, Metall. Mater. Trans. A 28 (1997) 377-387.
[36] H. Kong, Q. Chao, M.H. Cai, E.J. Pavlina, B. Rolfe, P.D. Hodgson, H. Beladi, Mater. Sci. Eng. A 707 (2017) 538-547.
[37] X. Tan, Y. Xu, X. Yang, D. Wu, Mater. Sci. Eng. A 589 (2014) 101-111.
[38] S. Samanta, P. Biswas, S. Giri, S.B. Singh, S. Kundu, Acta Mater. 105(2016) 390-403.
[39] N.N. Thadhani, M.A. Meyers, Prog. Mater. Sci. 30(1986) 0079642586900022.
[40] E.P.Da Silva, D.De Knijf, W. Xu, C. Fö jer, Y. Houbaert, J. Sietsma, R. Petrov, Mater. Sci. Technol. 31(2015) 808-816.
[41] S.M.C. van Bohemen, M.J. Santofimia, J. Sietsma, Scripta Mater. 58(2008) 488-491.
[42] S. Samanta, P. Biswas, S.B. Singh, Scripta Mater. 136(2017) 132-135.
[43] G.A. Thomas, J.G. Speer, D.K. Matlock, Iron Steel Technol. 5(2008) 227-236.
[44] T. Swarr, G. Krauss, Metall. Trans. A 7 (1976) 41-48.
[45] D.E. Kaputkin, L.M. Kaputkina, S.D. Prokoshkin, J. Phys. IV France 112 (2003) 275-278.
[46] H.Y. Li, X.W. Lu, W.J. Li, X.J. Jin, Metall. Mater. Trans. A 41 (2010) 1284-1300.
[47] S. Kumar, S.B. Singh, Mater. Charact. 196(2023) 112561.
[48] G. Larzabal, N. Isasti, J.M. Rodriguez-Ibabe, P. Uranga, Metall. Mater. Trans. A 49 (2018) 946-961.
[49] T. Kang, Z. Zhao, J. Liang, J. Guo, Y. Zhao, Mater. Sci. Eng. A 771 (2020) 138584.
[50] N. Isasti, D. Jorge-Badiola, M.L. Taheri, P. Uranga, Met. Mater. Int. 20(2014) 807-817.
[51] H.R. Ghazvinloo, A. Honarbakhsh-Raouf, A.R.K. Rashid, Metallurgist 59 (2015) 90-96.
[52] G. Chen, G. Xu, H.S. Zurob, H. Hu, X. Wan, Metall. Mater. Trans. A 50 (2019) 573-580.
[53] Y. Wang, K. Zhang, Z. Guo, N. Chen, Y. Rong, Mater. Sci. Eng. A 552 (2012) 288-294.
[54] X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scripta Mater. 68(2013) 321-324.
[55] K. Zhang, M. Zhang, Z. Guo, N. Chen, Y. Rong, Mater. Sci. Eng. A 528 (2011) 8486-8491.
[56] J. Tian, W. Wang, G. Xu, X. Wang, M. Zhou, H. Zurob, Met. Mater. Int. 29(2023) 1298-1310.
PDF(5111 KB)

17

Accesses

0

Citation

Detail

Sections
Recommended

/