Wen-wen Yu, Jin-gang Qi, Heng Cui
Non-metallic inclusions in steel are a significant challenge, affecting material properties and leading to issues such as stress concentration, cracking, and accelerated corrosion. Current methods for removing inclusions, including bubble, electromagnetic stirring, filtration separation, fluid flow, and sedimentation, often struggle with the removal of fine inclusions. Apart from these known methods, pulsed electric current (PEC), as an emerging technology, has demonstrated immense potential and environmental advantages. PEC offers adjustable current parameters and simple equipment, making it an attractive alternative to traditional methods. Its green energy-saving features and excellent results in regulating inclusion morphology and migration, as well as inhibiting submerged entry nozzle (SEN) clogging, make it a promising technology. In comparison to continuous current technology, PEC has shown significant advantages in regulating inclusions, not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption. The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel, improving its mechanical properties. Currently, the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories: the double electric layer theory, electromagnetic force reverse separation theory, and electric free energy drive theory. These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current. Looking ahead, PEC is expected to pave the way for new solutions in directional regulation of inclusion migration, efficient inclusion removal, SEN clogging prevention, and the purification of molten steel.