Compositional correlations to intrinsic magnetic properties in binary and Ti-alloyed MnAl magnetic alloys

Shuang Zhao, Ying Dong, Yu-xiao Jia, Yi-chen Xu, Yu-ye Wu

Journal of Iron and Steel Research International ›› 2024, Vol. 31 ›› Issue (12) : 3058-3068.

PDF(3907 KB)
Welcome to visit Journal of Iron and Steel Research International, July 26, 2025
PDF(3907 KB)
Journal of Iron and Steel Research International ›› 2024, Vol. 31 ›› Issue (12) : 3058-3068. DOI: 10.1007/s42243-024-01239-w
ORIGINAL PAPERS

Compositional correlations to intrinsic magnetic properties in binary and Ti-alloyed MnAl magnetic alloys

Author information +
History +

Abstract

MnAl rare-earth-free permanent magnets exhibit excellent advantages from economic and resource perspectives, which have attracted extensive attentions in recent decades. We reported the evolution in phase formation and intrinsic magnetic properties of τ-phase in binary MnAl alloys with the variation in Mn:Al ratios. Ferromagnetic τ-phase can be generated within the compositional range of Mn50+xAl50-x (x = 1-8), and pure τ-phase can only be obtained in the alloys with x = 4-7. With Mn:Al ratio increasing, saturation magnetization Ms and magnetocrystalline anisotropy constant K1 are gradually weakened due to the incremental antiferromagnetic Mn-1d atoms, but Curie temperature of τ-phase is gradually increased induced by the strengthened d-d hybridization of Mn1a-Mn1d. An attempt of doping traces of Ti was carried out in order to eliminate the negative antiferromagnetic interaction derived from Mn-1d atom. Ti atoms tend to occupy 1d sites and replace the Mn-1d atoms due to the relatively fewer valence electrons compared with Mn, resulting in the reduction in Mn1a-Mn1d antiferromagnetic interactions, which is demonstrated by the higher Ms of Mn55-yAl45Tiy(y=1) than that of Mn55Al45. However, with further substitution of Mn by Ti, unfavorable κ-phase is unavoidably generated. Finally, the occupation preference and the corresponding influences on local magnetic interactions as well as the magnetizations of the different alloying atoms including interstitial element C, 3d atoms Ti, Co and Cu, and main-group element Ga are systematically summarized, in order to offer the guidance of designing MnAl permanent magnets with ideal magnetic properties.

Key words

Mn-Al magnetic alloy / Intrinsic magnetic property / Atomic occupation / Alloying / Phase formation

Cite this article

Download Citations
Shuang Zhao, Ying Dong, Yu-xiao Jia, et al. Compositional correlations to intrinsic magnetic properties in binary and Ti-alloyed MnAl magnetic alloys[J]. Journal of Iron and Steel Research International, 2024, 31(12): 3058-3068 https://doi.org/10.1007/s42243-024-01239-w

References

[1] K.P. Skokov, O. Gutfleisch, Scripta Mater. 154(2018) 289-294.
[2] Z. Xiang, C.F. Xu, T.L. Wang, Y.M. Song, H.W. Yang, W. Lu, Intermetallics 101 (2018) 13-17.
[3] J.M.D.Coey, Scripta Mater. 67(2012) 524-529.
[4] J.D. Coey, J. Phys. Condens. Matter 26 (2014) 064211.
[5] J.H. Park, Y.K. Hong, S. Bae, J.J. Lee, J. Jalli, G.S. Abo, N. Neveu, S.G. Kim, C.J. Choi, J.G. Lee, J. Appl. Phys. 107 (2010) 09A731.
[6] A. Edström, J. Chico, A. Jakobsson, A. Bergman, J. Rusz, Phys. Rev. B 90 (2014) 014402.
[7] Y.X. Jia, Y.Y. Wu, S. Zhao, S.L. Zuo, K.P. Skokov, O. Gutfleisch, C.B. Jiang, H.B. Xu, Phys. Rev. Mater. 4(2020) 094402.
[8] Y.X. Jia, Y.Y. Wu, Y.C. Xu, R.X. Zheng, S.T. Zhao, K.P. Skokov, F. Maccari, A. Aubert, O. Gutfleisch, J.M. Wang, H. Wang, J.X. Zou, C.B. Jiang, Acta Mater. 245(2023) 118654.
[9] A.J.J.Koch, P. Hokkeling, M.G. v.d. Steeg, K.J. de Vos, J. Appl. Phys. 31(1960) S75-S77.
[10] H. Kōno, J. Phys. Soc.Jpn. 13(1958) 1444-1451.
[11] F. Bittner, J. Freudenberger, L. Schultz, T.G. Woodcock, J. Alloy. Compd. 704(2017) 528-536.
[12] J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, D. Sellmyer, Acta Mater. 158(2018) 118-137.
[13] S. Zhao, Y.Y. Wu, J.M. Wang, Y.X. Jia, T.L. Zhang, T.L. Zhang, C.B. Jiang, J. Magn. Magn.Mater. 483(2019) 164-168.
[14] T. Mix, F. Bittner, K.H.Mü ller, L. Schultz, T.G. Woodcock, Acta Mater. 128(2017) 160-165.
[15] J.Z. Wei, Z.G. Song, Y.B. Yang, S.Q. Liu, H.L. Du, J.Z. Han, D. Zhou, C.S. Wang, Y.C. Yang, A. Franz, D. Többens, J.B. Yang, AIP Adv. 4(2014) 127113.
[16] J. Yang, W. Yang, Z. Shao, D. Liang, H. Zhao, Y. Xia, Y. Yang, Chin. Phys. B 27 (2018) 117503.
[17] Q. Zeng, I. Baker, J.B. Cui, Z.C. Yan, J. Magn. Magn.Mater. 308(2007) 214-226.
[18] S. Zhao, Y.Y. Wu, C. Zhang, J.M. Wang, Z.H. Fu, R.F. Zhang, C.B. Jiang, J. Alloy. Compd. 755(2018) 257-264.
[19] S. Zhao, Y.Y. Wu, Z.Y. Jiao, Y.X. Jia, Y.C. Xu, J.M. Wang, T.L. Zhang, C.B. Jiang, Phys. Rev. Applied 11 (2019) 064008.
[20] J. Rodríguez-Carvajal, Phys. B Condens. Matter 192 (1993) 55-69.
[21] L. Feng, K. Nielsch, T.G. Woodcock, J. Alloy. Compd. 871(2021) 159554.
[22] H. Fang, J. Cedervall, F.J.M.Casado, Z. Matej, J.Bednarcik, J. Ångström, P. Berastegui, M. Sahlberg, J. Alloy. Compd. 692(2017) 198-203.
[23] Y. Jia, H. Ding, Y. Wu, J. Wang, H. Wu, T. Ma, S. Zhao, K.P. Skokov, A. Aubert, F. Maccari, O. Gutfleisch, Y. Xu, J. Niu, B. Qiao, S. Zhao, C. Jiang, Acta Mater. 232(2022) 117892.
[24] G. Hadjipanayis, D.J. Sellmyer, B. Brandt, Phys. Rev. B 23 (1981) 3349.
[25] T. Mix, K.H.Mü ller, L. Schultz, T.G. Woodcock, J. Magn. Magn. Mater. 391(2015) 89-95.
[26] Y. Huh, P. Kharel, A. Nelson, V.R. Shah, J. Pereiro, P. Manchanda, A. Kashyap, R. Skomski, D.J. Sellmyer, J. Phys. Condens. Matter 27 (2015) 076002.
[27] J.M.D.Coey, Magnetism and magnetic materials, Cambridge University Press, Cambridge, UK, 2010.
[28] K. Anand, J.J. Pulikkotil, S. Auluck, J. Alloy. Compd. 601(2014) 234-237.
[29] Z.Y. Jiao, Z.H. Fu, J.M. Wang, R.F. Zhang, C.B. Jiang, J. Magn. Magn.Mater. 489(2019) 165308.
[30] H. Kurt, K. Rode, M. Venkatesan, P. Stamenov, J.M.D. Coey, Phys. Status Solidi B 248 (2011) 2338-2344.
[31] H. Zhao, W. Yang, Z. Shao, G. Tian, D. Zhou, H. Du, S. Liu, J. Han, C. Wang, J. Xu, D. Yu, Y. Yang, J. Yang, Scripta Mater. 129(2017) 6-10.
[32] L. Pareti, F. Bolzoni, F. Leccabue, A.E. Ermakov, J. Appl. Phys. 59(1986) 3824-3828.
[33] P. Manchanda, P. Kumar, A. Kashyap, M.J. Lucis, J.E. Shield, A. Mubarok, J.I. Goldstein, S. Constantinides, K. Barmak, L.H. Lewis, D.J. Sellmyer, R. Skomski, IEEE Trans. Magn. 49(2013) 5194-5198.
[34] S. Mican, D. Benea, R. Hirian, R. Gavrea, O. Isnard, V. Pop, M. Coldea, J. Magn. Magn.Mater. 401(2016) 841-847.
[35] R. Gavrea, R. Hirian, S. Mican, D. Benea, O. Isnard, M. Coldea, V. Pop, Intermetallics 82 (2017) 101-106.
[36] P. Manchanda, A. Kashyap, J.E. Shield, L.H. Lewis, R. Skomski, J. Magn. Magn.Mater. 365(2014) 88-92.
[37] H.X. Wang, P.Z. Si, W. Jiang, J.G. Lee, C.J. Choi, J.J. Liu, Q. Wu, M. Zhong, H.L. Ge, Open J. Microphys. 1(2011) 19-22.
[38] Y. Geng, M.J. Lucis, P. Rasmussen, J.E. Shield, J. Appl. Phys. 118(2015) 033905.
[39] H. Zhao, W.Y. Yang, Z.Y. Shao, G. Tian, D. Zhou, X.P. Chen, Y.H. Xia, L. Xie, S.Q. Liu, H.L. Du, J.Z. Han, C.S. Wang, Y.C. Yang, J.B. Yang, J. Alloy. Compd. 680(2016) 14-19.
[40] A. Takeuchi, A. Inoue, Mater. Trans. 46(2005) 2817-2829.
[41] G. Effenberg, S. Ilyenko, O. Dovbenko, Ternary alloy systems, Springer-Verlag, Berlin, Germany, 2008.
PDF(3907 KB)

17

Accesses

0

Citation

Detail

Sections
Recommended

/