Effect of SiO2 mass ratio on high-Ti vanadium titanomagnetite sintering at basicity of 2.0

Peng Hu, Jun-jie Zeng, Yu-xiao Xue, Rui Wang, Yong-da Li, Ning-yu Zhang, Shuo Zhang, Xue-wei Lv

Journal of Iron and Steel Research International ›› 2025, Vol. 32 ›› Issue (4) : 849-860.

PDF(2304 KB)
Welcome to visit Journal of Iron and Steel Research International, July 25, 2025
PDF(2304 KB)
Journal of Iron and Steel Research International ›› 2025, Vol. 32 ›› Issue (4) : 849-860. DOI: 10.1007/s42243-025-01449-w
ORIGINAL PAPERS

Effect of SiO2 mass ratio on high-Ti vanadium titanomagnetite sintering at basicity of 2.0

Author information +
History +

Abstract

The effect of (CaO+SiO2) mass ratio on high-Ti vanadium titanomagnetite sintering was systematically studied at the fixed basicity (CaO/SiO2) of 2.0. The results show that sinter matrix strength is improved with (CaO + SiO2) mass ratio while the total iron content is reduced. Thermodynamic analysis indicates that the increase in (CaO + SiO2) mass ratio from 15.0 to 22.5 wt.% contributes to the formation of liquid phase, especially silico-ferrite of calcium and aluminum (SFCA). In addition, the formation of perovskite is inhibited and liquid phase fluidity is improved. The porosity of sinter matrix is reduced by 34.5% and SFCA amount is increased by 47.2% when (CaO + SiO2) mass ratio is increased from 15.0 to 18.0 wt.%. With the further increase in (CaO + SiO2) mass ratio, the structure of sinter matrix is too dense and the improved extent of SFCA amount is increasingly low. The appropriate (CaO + SiO2) mass ratio should be 18.0 wt.% overall. Under this condition, sinter matrix strength is greatly improved by over 13.5% compared with the base case and the total iron content can be maintained at about 49 wt.%.

Key words

High-Ti vanadium titanomagnetite / (CaO+SiO2) mass ratio / Sintering process / Liquid phase formation / Consolidation characteristics

Cite this article

Download Citations
Peng Hu, Jun-jie Zeng, Yu-xiao Xue, et al. Effect of SiO2 mass ratio on high-Ti vanadium titanomagnetite sintering at basicity of 2.0[J]. Journal of Iron and Steel Research International, 2025, 32(4): 849-860 https://doi.org/10.1007/s42243-025-01449-w

References

[1] G. Maldybayev, A. Korabayev, R. Sharipov, K.M. Al Azzam, E.S. Negim, O. Baigenzhenov, A. Alimzhanova, M. Panigrahi, R. Shayakhmetova, Heliyon 10 (2024) e24966.
[2] F. Gao, A.U. Olayiwola, B. Liu, S. Wang, H. Du, J. Li, X. Wang, D. Chen, Y. Zhang, Miner. Process. Extr. Metall. Rev. 43(2022) 466-488.
[3] K. Zhou, J. Song, Z. You, H. Xie, X. Lv, ISIJ Int. 60(2020) 1409-1415.
[4] W. Zhao, M. Chu, H. Guo, Z. Liu, B. Yan, P. Li, ISIJ Int. 61(2021) 146-157.
[5] W. Chen, Z. Dong, Y. Jiao, L. Liu, X. Wang, Crystals 11 (2021) 188.
[6] M. Yang, X. Lv, R. Wei, C. Bai, Metall. Mater. Trans. B 49 (2018) 2667-2680.
[7] M. Yang, J. Xiang, C. Bai, X. Zhou, Z. Liu, X. Lv, Metall. Mater. Trans. B 52 (2021) 1436-1449.
[8] S.H. Peng, H. Liu, Z.Z. Sun, C.W. Li, Y.L. Qin, W.Q. Liu, G. Wang, J. Iron Steel Res.Int. 30(2023) 2122-2132.
[9] T. Jiang, Z. Yu, Z. Peng, M. Rao, Y. Zhang, G. Li, ISIJ Int. 55(2015) 1599-1607.
[10] Z. Xing, G. Cheng, H. Yang, X. Xue, Metall. Res. Technol. 120(2023) 606.
[11] S. Yang, W. Tang, X. Xue, Materials 14 (2021) 4376.
[12] A. Dehghan-Manshadi, J. Manuel, S. Hapugoda, N. Ware, ISIJ Int. 54(2014) 2189-2195.
[13] Y. Lu, H. Zhou, F. Yuan, C. Wang, X. Duan, Y. Wang, JOM 75 (2023) 3424-3434.
[14] W.D. Tang, S.T. Yang, L.H. Zhang, Z. Huang, H. Yang, X.X. Xue, J. Cent.South Univ. 26(2019) 132-145.
[15] S. Yang, M. Zhou, T. Jiang, X. Xue, Minerals 11 (2021) 515.
[16] Z. Xing, J. Ma, G. Cheng, H. Yang, X. Xue, J. Sustain. Metall. 8(2022) 1358-1369.
[17] L. Zhang, Z. Gao, S. Yang, W. Tang, X. Xue, Metals 10 (2020) 569.
[18] X. Jiang, J. Zhao, L. Wang, H. An, Q. Gao, H. Zheng, F. Shen, ISIJ Int. 61(2021) 86-92.
[19] S. Machida, K. Nushiro, K. Ichikawa, H. Noda, H. Sakai, ISIJ Int. 45(2005) 513-521.
[20] Z. Pang, Y. Jiang, J. Ling, X. Lü, Z. Yan, Int. J. Miner. Metall. Mater. 29(2022) 1170-1178.
[21] Z. Guo, Y. Zong, J. Zhang, P. Zhao, Z. Xu, Y. Liu, C. Ye, K. Jiao, Fuel 372 (2024) 132179.
[22] S. Wright, L. Zhang, S. Sun, S. Jahanshahi, Metall. Mater. Trans. B 31 (2000) 97-104.
[23] M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, M. Hämä- läinen, ISIJ Int. 47(2007) 38-43.
[24] K.C. Mills, B.J. Keene, Int. Mater. Rev. 32(1987) 1-120.
[25] S. Wu, G. Zhang, S. Chen, B. Su, ISIJ Int. 54(2014) 582-588.
[26] H. Guo, X.M. Guo, Steel Res. Int. 90(2019) 1900138.
[27] X. Lv, C. Bai, Q. Deng, X. Huang, G. Qiu, ISIJ Int. 51(2011) 722-727.
[28] S. Wu, X. Zhai, Metall. Res. Technol. 115(2018) 505.
[29] N.A.S. Webster, M.I. Pownceby, I.C. Madsen, J.A. Kimpton, Metall. Mater. Trans. B 43 (2012) 1344-1357.
[30] L. Niu, Z. Liu, J. Zhang, D. Lan, S. Li, Z. Li, Y. Wang, Int. J. Miner. Metall. Mater. 30(2023) 303-313.
PDF(2304 KB)

57

Accesses

0

Citation

Detail

Sections
Recommended

/