The influences of nitrogen content and austenitization temperature on Nb(C,N) precipitation in niobium microalloyed steels were studied by different methods: optical microscopy, tensile tests, scanning electron microscopy, transmission electron microscopy, physicochemical phase analysis, and smallangle Xray scattering. The results show that the strength of the steel with high nitrogen content is slightly higher than that of the steel with low nitrogen content. The increase in the nitrogen content does not result in the increase in the amount of Nb(C,N) precipitates, which mainly depends on the niobium content in the steel. The mass fraction of smallsized Nb(C,N) precipitates (1-10 nm) in the steel with high nitrogen content is less than that in the steel with low nitrogen content. After austenitized at 1150 ℃, a number of large cuboidal and needleshaped particles are detected in the steel with high nitrogen content, whereas they dissolve after austenitized at 1200 ℃ and the Nb(C,N) precipitates become finer in both steels. Furthermore, the results also show that part of the nitrogen in steel involves the formation of alloyed cementite.
Key words
Key words: nitrogen content /
solution temperature /
Nb(C, N) /
cementite
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] A.J. DeArdo, THERMEC 97: International Conference on Thermomechanical Processing of Steels and Other Materials, 1997, pp. 13-29.
[2] A.J. Deardo, International Materials Reviews, 48 (2003) 371-402.
[3] R. Lagneborg, T. Siwecki, S. Zajac, B. Hutchinson, Scandinavian Journal of Metallurgy, 28 (1999).
[4] N.K. Balliger, R.W.K. Honeycombe, Metallurgical Transactions A, 11 (1980) 421-429.
[5] R. Lagneborg, ISIJ international, 38 (1998) 1130-1139.
[6] F. Fang, Q.L. Yong, C.F. Yang, H. Su, Journal of Iron and Steel Research, International, 17 (2010) 36-42.
[7] N. Shams, Materials Science and Technology, 1 (1985) 950-953.
[8] M.A. Bepari, J.A. Whiteman, Journal of Materials Processing Technology, 56 (1996) 834-846.
[9] J. Albarran, B. Campillo, F. Estevez, L. Martinez, Scripta metallurgica, 23 (1989) 1099-1104.
[10] B. Campillo, J. Albarran, F. Estevez, D. Lopez, L. Martinez, Scripta metallurgica, 23 (1989) 1363-1368.
[11] B. Campillo, O. Flores, J.L. Albarran, J. Juarez-Islas, R. Perez, L. Martinez, D. Lopez, Journal of Materials Science, 27 (1992) 1365-1368.
[12] H.X, Wang, PhD Thesis (in Chinese), Central iron and steel research institute, 2006.
[13] G.Tither, in: G. Tither, Z. shouhua (Eds.) HSLA steels: processing,properties and applications, Beijing,China, 1990.
[14] W. Martienssen, H. Warlimont, Springer handbook of condensed matter and materials data, Springer, 2006.
[15] H. Nordberg, B. Aronsson, J Iron Steel Inst, 206 (1968) 1263-1266.
[16] L. Santella,PHD Thesis, University of Pittsburgh, 1981.
[17] P. Mandry, W. Dornelas, Compt. Rend. Acad. Sci. Paris, Ser. C, 263 (1966) 1118-1121.
[18] K. Irvine, F. Pickering, T. Gladman, J Iron Steel Inst, 205 (1967) 161-182.
[19] C.f. Yang, Q.l. Wang, Journal of Iron and Steel Research, International, 15 (2008) 81-86.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}
Funding
The CITIC-CBMM Niobium Steel R&D Program
{{custom_fund}}