Flow field simulation and optimization of multi-strand tundish

ZHAO Zhan-shan, WANG Shi, REN Tao, LI Yi, ZHANG Zhong-fu, WANG Qing

Continuous Casting ›› 2022, Vol. 41 ›› Issue (5) : 23-29.

PDF(4041 KB)
Welcome to visit Continuous Casting, July 28, 2025
PDF(4041 KB)
Continuous Casting ›› 2022, Vol. 41 ›› Issue (5) : 23-29. DOI: 10.13228/j.boyuan.issn1005-4006.20220034
Continuous Casting Technology

Flow field simulation and optimization of multi-strand tundish

Author information +
History +

Abstract

In order to reduce the probability of slag rolling and improve the removal ability of inclusions, the internal structure of multi-strand tundish in a steel plant was optimized by physical simulation and numerical simulation. The results show that the elevation angle of the diversion hole has a great influence on the flow field and temperature field in the tundish. The improved retaining wall uses 25 ° elevation diversion holes to reduce the maximum temperature difference of each flow from 5.2 ℃ to 2.4 ℃. The smaller elevation angle of the diversion hole is beneficial to the removal of inclusions, and the flow uniformity at the elevation angle of 25 ° is better. Increasing the dam height is also conducive to the floating of inclusions. The recommended dam height is 650 mm. In addition, it is recommended to keep the pouring height above 100 mm to eliminate the adverse effect of slag entrapment.

Key words

tundish simulation / flow control device / inclusion / flow filed / slag

Cite this article

Download Citations
ZHAO Zhan-shan, WANG Shi, REN Tao, et al. Flow field simulation and optimization of multi-strand tundish[J]. Continuous Casting, 2022, 41(5): 23-29 https://doi.org/10.13228/j.boyuan.issn1005-4006.20220034

References

[1] López-Ramirez S, Palafox-Ramos J, Morales R D, et al. Modeling study of the influence of turbulence inhibitors on the molten steel flow, tracer dispersion, and inclusion trajectories in tundishes[J]. Metall Mater Trans B,2001,32(4):615.
[2] ZHONG L C,WANG M A,CHEN B Y,et al.Flow control in six-strand billet continuous casting tundish with different configurations[J].Iron Steel Res Int,2010,17(7):7.
[3] Cwudziński A.Numerical,physical,and industrial experiments of liquid steel mixture in one strand slab tundish with flow control devices[J].Steel Res Int,2014,85(4):623.
[4] Kumar A, Mazumdar D, Koria S C.Modeling of fluid flow and residence time distribution in a four-strand tundish for enhancing inclusion removal[J].ISIJ Int,2008,48(1):38.
[5] 陈玉辉,刘吉刚.中间包优化对板坯连铸钢水洁净度的影响分析[J].连铸,2019(3):51.
[6] 陈远清,仇圣桃.T形中间包新型控流装置的模拟及试验[J].钢铁,2018,53(7):45.
[7] 李茂旺,李怡宏,董超.流钢孔对中间包流体行为影响的数值模拟[J].中国冶金,2020,30(6):55.
[8] 王汝栋,苏旺,崔衡,等.基于F曲线的中间包流场优化[J].工程科学学报, 2020, 42(1): 95.
[9] 毕学工,李宏玉,刘光明.基于RTD曲线连铸中间包优化设计数值模拟[J]. 武汉科技大学学报, 2010,33(4):343.
[10] 苏振江,文光华,唐萍.多流中间包内钢液流动规律模拟研究[J].钢铁钒钛, 2004 (1):30.
[11] 李少翔,铁占鹏,郑宝安,等.三流大方坯连铸中间包流场优化数值模拟研究[J]. 连铸,2019 (5):47.
[12] Sahay S K, De T K, Basu D S, et al. Strand performance improvement through use of asymmetric baffles in tundish of six strand billet caster at DSP[J]. Iron and Steelmaker (I and SM), 2001, 28(7): 71.
[13] 李东侠,崔衡.多流中间包钢液流动特性分析方法[J].工程科学学报,2016,38(1):41.
[14] 郑淑国,朱苗勇.多流连铸中间包内钢液流动特性的分析模型[J].金属学报,2005,41(10):67
[15] 青靓,李树森,崔衡.连铸中间包降低残钢量的水模型研究[J].铸造技术, 2017, 38(9): 2193.
[16] 王伟,朱立光,张彩军.双流T型中间包的流场模拟及其控流结构优化[J].连铸,2020 (2):62.
[17] 韩东,艾新港,李胜利.基于温度场的17 t双流中间包控流装置优化模拟[J].特殊钢, 2019, 40(5): 7.[18] 张驰,包燕平,王敏.四流T型连铸中间包流场优化研究[J].冶金设备, 2019(4): 5.
[19] 王爱东,徐海芳,傅秋华,等.薄板坯连铸中间包流场数值模拟与优化[J].连铸,2020 (4):1.
[20] 高宇波,杨城,万文华,等.小方坯连铸中间包流场数值模拟与分析[J].连铸,2021(5):75.
[21] 郑瑞轩,赵立华,姚骋,等.四流中间包流场影响因素分析与优化[J].炼钢,2021,37(1):63.
[22] 祝航航,王敏,姚骋,等. 六流T型中间包夹杂物去除行为的数值模拟[J]. 中国冶金,2022,32(8):89.
[23] 潘文峰,蔡兆镇,王少波,等. 连铸板坯二冷高温区传热均匀性研究与优化[J]. 中国冶金,2021,31(8):23.
[24] 张杰,郑淑国,朱苗勇. 加热功率对感应加热中间包影响的数值模拟[J]. 中国冶金,2021,31(10):68.
[25] 陈希青,肖红,王璞,等. 双通道感应加热中间包的三维磁流热耦合模型[J]. 钢铁,2021,56(6):48.
[26] 朱坦华,周秋月,任英,等. 二次氧化过程IF钢中间包中夹杂物演变行为[J]. 钢铁,2020,55(3):35.
PDF(4041 KB)

31

Accesses

0

Citation

Detail

Sections
Recommended

/