Electromagnetic heating finite element simulation of 718 Ni alloy recycled by additive manufacturing

ZHAO Shuo, WANG Bing-shan, LÜ Jing-cai, LIN Wen, ZHU Shi-bin

Continuous Casting ›› 2023, Vol. 42 ›› Issue (2) : 34-42.

PDF(11160 KB)
Welcome to visit Continuous Casting, July 26, 2025
PDF(11160 KB)
Continuous Casting ›› 2023, Vol. 42 ›› Issue (2) : 34-42. DOI: 10.13228/j.boyuan.issn1005-4006.20220099
Continuous Casting Technology

Electromagnetic heating finite element simulation of 718 Ni alloy recycled by additive manufacturing

  • ZHAO Shuo, WANG Bing-shan, LÜ Jing-cai, LIN Wen, ZHU Shi-bin
Author information +
History +

Abstract

Inconel718 alloy was one of the most widely used materials in additive manufacturing. Due to the low effective utilization rate of powder in the additive manufacturing process, a large amount of powder had to be recovered. However, there was a problem of slow melting speed in the recovery and remelting process. Therefore, the melting process of Inconel718 metal powder was simulated by induction furnace heating, the change of melting rate of recycling powder under different conditions was investigated by changing the diameter, shape, distribution of powder, power, frequency, atmosphere, number of coils and the distance between the coils and crucible center. The simulation results show that in a certain size range, the melting rate of Inconel718 powder is the fastest when the prepared sphere diameter is 0.010 m and the large particle size powder is distributed under the crucible. At the same time, the melting rate increases with the increase of heating power, frequency and number of coils, and decreases with the increase of the distance between the coils and crucible center, the heating atmosphere can be argon or vacuum.

Key words

additive manufacturing / Inconel718 powder / induction heating / melting rate / simulation

Cite this article

Download Citations
ZHAO Shuo, WANG Bing-shan, LÜ Jing-cai, LIN Wen, ZHU Shi-bin. Electromagnetic heating finite element simulation of 718 Ni alloy recycled by additive manufacturing[J]. Continuous Casting, 2023, 42(2): 34-42 https://doi.org/10.13228/j.boyuan.issn1005-4006.20220099

References

[1] 庄景云. 变形高温合金GH4169[M]. 北京: 冶金工业出版社, 2006.
[2] 郭育良,金会心,王伟杰. 不锈钢生产中含铬固体废弃物的回收利用[J]. 中国冶金,2021, 31(1):81.
[3] 王长军,刘雨,周健,等.金属增材技术在钢铁领域的研究进展[J].中国冶金, 2022,32(5):7.
[4] 许德,高华兵,董涛,等.增材制造用金属粉末研究进展[J].中国有色金属学报, 2021,31(2): 245.
[5] 禹润缜,余圣甫,齐膑,等.电弧增材制造HSLA钢的组织演变行为与力学性能[J].钢铁,2021,56(10):136.
[6] 刘世锋,魏钢,王岩,等.增材制造17-4PH马氏体不锈钢研究进展[J].中国冶金,2022,32(6):15.
[7] 张亮亮,周阳,刘世锋,等.模具钢增材制造及其性能的研究进展[J].中国冶金,2022,32(3):1.
[8] 黄永建,刘军会,杨进航,等.增材制造模具的研究进展[J].中国冶金,2019,29(11):6.
[9] 刘佩峰. 增材制造用金属粉末质量研究[J]. 中国建材科技,2021,30(4):1.
[10] 刘芳,赵卫星,董盼,等.微波消解ICP-AES法测定镍基合金4种元素含量[J/OL].中国冶金:1-6[2023-03-31].DOI:10.13228/j.boyuan.issn1006-9356.20220992.
[11] 杨浩,李尧,郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报,2022,36(6):129.
[12] XIA Y, DONG Z W, GUO X Y, et al. Towards a circular metal additive manufacturing through recycling of materials: A mini review[J]. Journal of Central South University,2020,27(4):1134.
[13] 许文勇,李周,刘玉峰,等.温度对镍基高温合金粉末氧化行为的影响[J].粉末冶金技术, 2020,38(3):192.
[14] 张义文,刘建涛,贾建,等.欧美第四代粉末高温合金研究进展[J].粉末冶金工业, 2022,32(1):1.
[15] 黄德胜,姚晓敏,年夫喜,等.基于Comsol Multiphysics的通水冷却热流耦合数值分析[J].水电能源科学. 2022,40(4):150.
[16] XIE W. Research and development of new superalloy remelting process[J]. Acta Metallurgica Sinica (English Letters),2005, 18(1): 81.
[17] BLACKWELL P L. The mechanical and microstructural characteristics of laser-deposited IN718[J]. Journal of Materials Processing Technology, 2005,170:240.
[18] 金辉. 电磁感应加热技术与应用[J]. 连铸,2019(2):62.
[19] ZHAO X M, CHEN J, LIN X, et al. Study on microstructure and mechanical properties of laser rapid forming inconel 718[J]. Materials Science and Engineering A,2008,478:119.
[20] 董世运,闫世兴,冯祥奕,等.激光增材制造钢粉体材料研究现状[J].激光与光电子学进展,2018,55(1):76.
[21] 周钢,蔡道生,史玉升,等.金属粉末熔化快速成型技术的研究进展[J].航空制造技术,2009,52(3):43.
[22] 章文献. 选择性激光熔化快速成形关键技术研究[D]. 湖北: 华中科技大学,2008.
[23] KARLSSON J, SNIS A, ENGQVIST H. Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions [J]. Journal of Materials Processing Technology,2013,213(12):2109.
[24] GU H, GONG H, DILIP J J S. Effects of powder variation on the microstructure and tensile strength of Ti6Al4V parts fabricated by selective laser melting[J]. Nanotechnology Weekly,2014,51:470.
[25] 肖飞. 选区激光熔化成形304不锈钢的力学性能研究[D]. 武汉: 华中科技大学,2011.
[26] 李淑君,王惠泉,赵文玉,等.基于 COMSOL 多物理场耦合仿真建模方法研究[J].机械工程与自动化, 2014(4):19.
PDF(11160 KB)

17

Accesses

0

Citation

Detail

Sections
Recommended

/