Effect of mold water flow rate in 40Cr billet continuous casting on surface crack

SHI Wei-ning

Continuous Casting ›› 2023, Vol. 42 ›› Issue (2) : 84-89.

PDF(2423 KB)
Welcome to visit Continuous Casting, July 26, 2025
PDF(2423 KB)
Continuous Casting ›› 2023, Vol. 42 ›› Issue (2) : 84-89. DOI: 10.13228/j.boyuan.issn1005-4006.20220119
Strand Quality

Effect of mold water flow rate in 40Cr billet continuous casting on surface crack

Author information +
History +

Abstract

In order to improve the surface cracks of 40Cr steel billet produced by Xianggang’s No. 2 continuous casting machine, the evolution of surface quality of the billet under different mold water flow rates was studied. The results show that with the increase of the mold water flow rate, the heat flux density increases first and then decreases, and the grain size on the billet surface decreases first and then increases. When the mold water flow rate is less than 2 250 L/min, a large number of abnormally grown austenite grain structures are displayed and the grain sizes are not uniform on the billet surface, the surface cracks of the billet mainly propagate along the grain boundaries. When the mold water flow rate is greater than 2 333.33 L/min, with the increase of the mold water flow rate, the heat flux density decreases, the grain sizes on the billet surface increase again, but surface cracks on the billet disappear. When the mold water flow rate is 2 333.33 L/min, the nucleation rate of molten steel near the mold wall is the largest, the grain size of the billet surface is the smallest and uniform, and the grain structure that is the most conducive to resisting stress cracking is obtained. This analysis method provides a new idea for solving the problem of billet surface cracks.

Key words

billet continuous casting / mold water flow rate / surface crack / grain size / nucleation rate

Cite this article

Download Citations
SHI Wei-ning. Effect of mold water flow rate in 40Cr billet continuous casting on surface crack[J]. Continuous Casting, 2023, 42(2): 84-89 https://doi.org/10.13228/j.boyuan.issn1005-4006.20220119

References

[1] 吴豪, 蔡兆镇, 牛振宇, 等. 薄板坯连铸结晶器铜板热/力行为[J]. 中国冶金, 2021, 31(12): 79.
[2] 熊毅刚. 板坯连铸[M]. 北京:冶金工业出版社, 1994.
[3] 王勇. 结晶器电磁搅拌对方坯中非金属夹杂物去除的影响研究[J]. 钢铁钒钛, 2022, 43(1): 131.
[4] 吴晨辉, 李阳, 谢鑫, 等. 板坯连铸过程凝固传热数值计算与工艺优化[J]. 中国冶金, 2022, 32(3): 92.
[5] 卢海彪, 张辉琪, 钟云波,等. 板坯连铸结晶器电磁搅拌流场模拟[J]. 连铸, 2023(1): 1.
[6] 何建国, 邓安元, 许秀杰, 等. 电磁搅拌宽厚板结晶器内钢液流动和液面波动[J]. 连铸, 2022(4): 50.
[7] 周晨阳, 黄军, 张亚竹,等. 大方坯连铸结晶器水口优化模拟探究[J]. 连铸, 2023(1): 97.
[8] 刘文祥, 任磊. 浸入式水口倾角对宽幅连铸结晶器内流动行为的影响[J]. 钢铁, 2022, 57(1): 83.
[9] 韩秀丽, 闫晓鹏, 刘磊, 等. 连铸结晶器保护渣渣膜传热特性研究进展[J]. 特殊钢, 2021, 42(6): 6.
[10] 王伟, 亓捷, 翟俊, 等. 含钛铁素体不锈钢连铸过程保护渣性能演变对铸坯质量的影响[J]. 炼钢, 2021, 37(5): 76.
[11] 孟祥宁, 林仁敢, 杨杰, 等. 结晶器振动对连铸坯初始裂纹形成影响[J].东北大学学报(自然科学版), 2016, 37(1): 54.
[12] 廖亚莉, 姚宇峰. 鞍钢结晶器电磁搅拌技术应用分析[J].铸造技术, 2013, 34(6): 723.
[13] 李博斌. 连铸工艺对M2高速钢碳化物析出的影响[J]. 河北冶金, 2018 (12): 23.
[14] 彭其春, 童志博, 于学森, 等. 含硼中碳钢铸坯角部横裂纹影响因素分析[J]. 炼钢, 2012, 28(6): 44.
[15] 杨志刚, 徐子谦, 黄伟丽, 等. 连铸板坯角部纵裂原因分析及控制措施[J]. 连铸, 2021(6): 71.
[16] 王刚, 王晓英, 李立刚, 等. 410不锈钢小方坯表面纵裂的控制[J]. 炼钢, 2015, 31(2): 21.
[17] 刘志国, 李鑫. 高强钢纵裂控制[J]. 包钢科技, 2021, 47(2): 45.
[18] 蔡开科. 连铸坯表面裂纹的控制[J]. 鞍钢技术, 2004(3): 1.
[19] 程常桂, 王超, 陈灿, 等. 结晶器冷却强度对铸坯初始凝固均匀性的影响[J]. 武汉科技大学学报, 2008, 31(5): 491.
[20] 彭其春, 彭胜, 杨进玲, 等. 板坯连铸结晶器冷却水量控制分析[J]. 武汉科技大学学报, 2013, 36(1): 1.
[21] 冯永平, 郑娜, 唐磊, 等. 薄板坯连铸结晶器内钢水凝固传热数值模拟[J]. 连铸, 2021(6): 44.
[22] 陈树林, 周淑华, 卞鸿涛, 等. 小方坯结晶器传热状况初探[J]. 河南冶金, 2004, 12(3): 25.
[23] 谢集祥, 罗钢, 刘浏, 等. 1 850 mm×230 mm板坯连铸结晶器流场与温度场数值模拟[J].中国冶金,2020,30(2):54.
[24] 崔忠圻, 覃耀春. 金属学与热处理第2版[M]. 机械工业出版社, 2007.
[25] AUER S, FRENKEL D. Prediction of absolute crystal nucleation rate in hard-sphere colloids[J]. Letters to Nature, 2001, 409(22): 1020.
[26] BRIMACMBEJ K, SORIMACHI K. Crack formation in the continuous casting of steel[J]. Metallurgical and Materials Transactions B, 1977, 8(9): 489.
[27] 李朋欢, 包燕平, 岳峰, 等. 异常粗大的奥氏体晶粒对表面晶间裂纹的影响[J]. 北京科技大学学报, 2009, 31(增刊1): 177.
[28] CROWTHER D N, MINTZ B. Influence of grain size on hot ductility of plain C-Mn steels[J]. Materials Science and Technology, 1986, 2(9): 946.
PDF(2423 KB)

38

Accesses

0

Citation

Detail

Sections
Recommended

/