Development and prospect of continuous casting process control system

YAO Hongyong, ZHANG Ruizhong, LI Jie, GAO Yu, CAO Jinshuai

Continuous Casting ›› 2023, Vol. 42 ›› Issue (4) : 1-9.

PDF(3254 KB)
Welcome to visit Continuous Casting, July 30, 2025
PDF(3254 KB)
Continuous Casting ›› 2023, Vol. 42 ›› Issue (4) : 1-9. DOI: 10.13228/j.boyuan.issn1005-4006.20220190
Comprehensive Summarization

Development and prospect of continuous casting process control system

Author information +
History +

Abstract

The development history and field application of process control (level 2) system of continuous casting are discussed. Based on the characteristics of continuous casting process and the corresponding functional requirements, the status quo and shortcomings of the functional positioning, data generation and application of process control system in this process are discussed. The requirements for the continuous casting process control system are investigated in the light of the current digital and intelligent development requirement, and the structure, functions, development and data processing characteristics of the continuous casting process control system are discussed. On this basis, the future development direction of continuous casting process control system is further prospected, and the development suggestions of process control system are put forward.

Key words

continuous casting / process control / level 2 system / database / big data / intelligent manufacturing

Cite this article

Download Citations
YAO Hongyong, ZHANG Ruizhong, LI Jie, et al. Development and prospect of continuous casting process control system[J]. Continuous Casting, 2023, 42(4): 1-9 https://doi.org/10.13228/j.boyuan.issn1005-4006.20220190

References

[1] 贺宗春.从“十四五”原材料规划看——钢企数字化转型的3个关键[N].中国冶金报,2022-1-18(04)
[2] 葛秀欣,朱志斌.钢铁行业数字孪生工厂平台的研究与应用[J].冶金自动化,2021,45(6):37.
[3] 刘文仲.中国钢铁工业互联网发展现状及思考[J].中国冶金,2022,32(11):1.
[4] 朱苗勇,罗森.高效连铸数字化发展思考[J].冶金自动化,2023,47(1):68.
[5] 杨利彬.“十三五”中国炼钢关键技术进步及思考[J].钢铁,2022,57(8):1.
[6] 范铁军.钢铁企业数字化转型探索[J].中国钢铁业,2020(8):41.
[7] 顾炎.钢铁工业自动化发展趋势[J].钢铁,1979,14(2):1.
[8] 阎峰.国外连铸技术的现状及发展趋势[J].炼钢,1989(3):57.
[9] 张如斌,陶金明,崔立新.连铸技术国内外现状及发展趋势[C]//连铸设备技术研讨会.北京:中国金属学会, 2010:62.
[10] 李卫.珠钢计算机系统及其特点[J].冶金丛刊,2000(1):27.
[11] 丁荣麟,封金双,申步君,等.邯钢薄板坯连铸连轧过程控制计算机系统[J].冶金自动化,2001,25(4):24.
[12] 初福江,李毅民.包钢连铸机计算机控制系统(Ⅱ)[J].基础自动化,2000(6):40.
[13] 毛汉平,潘红,徐倚天,等.济钢4#大板坯连铸机过程计算机控制系统[J].冶金自动化,1997,21(6):12.
[14] 王仲亮,顾超,王敏,等.深度学习在炼钢过程中的研究进展及应用现状[J].工程科学学报:2022,44(7):1171.
[15] 韩占光,周干水,谢长川.基于机器学习的连铸坯低倍缺陷检测[J].连铸,2022(6):38.
[16] 侯自兵,柳前,江少奇,等.基于大数据挖掘的低碳钢连铸工艺参数优化[J].钢铁研究学报,2022,34(9):952.
[17] 杨立安,米进周,李涛,等.连铸板坯表面纵裂纹预测模型智能化定制方法[J].连铸,2022(6):16.
[18] 侯自兵,彭治强,郭坤辉,等.基于连铸生产大数据的热轧卷质量预测模型[J].连铸,2022(6):29.
[19] 刘奕.板坯连铸二级自动化系统研究[J].山东工业技术,2015(6):169.
[20] 冯志,王学峰.连铸二级计算机系统的研发与应用[J].科学技术创新,2018(12):68.
[21] 仝超,仝轻. 奥钢联板坯连铸二级系统的研究与应用[C]//中国计量协会冶金分会2017年会论文集.湛江:中国计量协会冶金分会,2017:249.
[22] 安航航,焦树强,孙彦辉,等.板坯连铸异钢种连浇混浇坯长度及成分变化模型的开发及应用[J].工程科学学报,2021,43(12):1656.
[23] 田志恒,田陆,田立,等. 基于电磁超声的连铸坯液芯凝固末端位置在线测量[C]//第十届中国钢铁年会暨第六届宝钢学术年会. 上海:中国金属学会,2015:1.
[24] LIEFTUCHT, DIRK R, MARKUS S, et al. HD mold-A new fiber-optical-based mold monitoring system[J].Iron and Steel Technology. 2013,10(12). 87.
[25] 赵春锋,马亚峰.PDA数据采集分析系统在舞钢4 100 mm宽厚板轧钢生产线的实际应用[J].宽厚板,2015,21(5):44.
[26] 吴小渊.IbaPDA在全连续铸造机故障诊断中的应用[J].铸造设备与工艺,2015(1):4.
[27] 张红波.PI实时数据库在钢铁企业能源管理系统中的应用[J].科技视界,2015(11):286.
[28] 部伟利.钢铁企业PI实时数据库的应用[J].数字技术与应用,2017(7):122.
[29] 李瑞生,赵艳良,罗北平,等.连铸二级系统升级及拓展的探讨与实践[J].中国冶金,2018,28(12):60.
[30] 欧阳劲松,刘丹,汪烁,等.德国工业4.0参考架构模型与我国智能制造技术体系的思考[J].自动化博览,2016(3):62.
[31] 闫恒川.RAMI4.0在连铸过程控制系统中的应用[J].自动化博览,2019(4):69.
[32] 王国栋.钢铁工业信息系统必须是全流程、一体化[N].中国冶金报,2019-10-11(02).
[33] 杜斌. 宝钢炼钢、连铸自动化技术研发的回顾与展望——从控制模型到管理优化模型[C]//2008年全国炼钢-连铸生产技术会议文集.杭州:中国金属学会,2008:66.
[34] 魏忠.从过程工业人才培养看人工智能教育[J].中国信息技术教育,2021(8):11.
[35] 朱苗勇.新一代高效连铸技术发展思考[J].钢铁,2019,54(8):21.
[36] 梅康元,米进周,郭岩嵩,等.连铸生产线智能化技术研究[J].工业控制计算机,2021,34(7):139.
[37] 杨昌霖.高效连铸相关工艺模型及智能控制系统研发[J].重型机械,2021(3):26.
[38] 史晨.迷雾与鸿沟:制造业企业数字化转型面临多重挑战[J].国家治理,2021(48):34.
PDF(3254 KB)

28

Accesses

0

Citation

Detail

Sections
Recommended

/