Large eddy simulation of the effect of EMBr on the flow behavior of thin slab continuous casting mold with ultra-high casting speed

CUI He-nan, ZHANG Jiang-shan, JI Chen-xi, WANG Guo-lian, LI Ming, LIU Qing

Continuous Casting ›› 2023, Vol. 42 ›› Issue (3) : 33-41.

PDF(5890 KB)
Welcome to visit Continuous Casting, July 26, 2025
PDF(5890 KB)
Continuous Casting ›› 2023, Vol. 42 ›› Issue (3) : 33-41. DOI: 10.13228/j.boyuan.issn1005-4006.20230023
Continuous Casting Technology

Large eddy simulation of the effect of EMBr on the flow behavior of thin slab continuous casting mold with ultra-high casting speed

Author information +
History +

Abstract

Thin slab continuous casting and rolling is an important technology to promote the efficient and green development of China’s iron and steel industry. Ultra high-speed continuous casting is the crucial technology that needs to be broken through to achieve efficient production of thin slab continuous casting and rolling. Understanding the flow characteristics of molten steel in the mold under ultra-high casting speed conditions and obtaining a stable flow field distribution are important prerequisites for increasing the casting speed. A complete geometry model and structured grid were established for the thin slab continuous casting mold equipped with multi-ports SEN. The effects of SEN structure, EMBr configuration, and EMBr intensity on the flow field distribution in the mold were studied by coupling the LES, VOF, and MHD models. The industrial nail dipping experiment was applied to obtain the surface velocity of the mold in actual production process, and the reliability of the numerical simulation method was verified by comparing the experimental results with simulation results under corresponding operating conditions. The results indicate that when the casting speed is 8.0 m/min, the application of multi-ports SEN will lead to a complex flow field structure, which has characteristics different from those of a traditional mold equipped with dual-ports SEN, such as multiple jets, strong impact, and weak circulation. When applying a 4-ports SEN and a 5-ports SEN, the penetration depth of the major steel jetting stream is as high as 1.6 m and 2.1 m, respectively. EMBr can effectively control the flow field, and the braking effects of different EMBr types vary. Type C, which can cover all the outlets of the multi-ports SEN, performs better in reducing the penetration depth and improving the stability of the flow field. The increase of the EMBr intensity has a significant impact on the flow field structure. The turning point of EMBr intensity of the flow field structure change is 300 mT. The flow field under this EMBr intensity is unstable and asymmetric. Therefore, when adjusting the magnetic field intensity in the production process, it is advised to avoid being within this EMBr intensity range for a long time to ensure the stability of the meniscus and the uniform growth of the shell.

Key words

ultra-high speed casting / thin slab / multi-ports SEN / large eddy simulation / electromagnetic braking

Cite this article

Download Citations
CUI He-nan, ZHANG Jiang-shan, JI Chen-xi, et al. Large eddy simulation of the effect of EMBr on the flow behavior of thin slab continuous casting mold with ultra-high casting speed[J]. Continuous Casting, 2023, 42(3): 33-41 https://doi.org/10.13228/j.boyuan.issn1005-4006.20230023

References

[1] 殷瑞钰,张慧.新形势下薄板坯连铸连轧技术的进步与发展方向[J].钢铁,2011,46(4):1.
[2] 毛新平.薄板坯连铸连轧技术及其发展[J].中国冶金,2003,13(5):4.
[3] 毛新平,高吉祥,柴毅忠.中国薄板坯连铸连轧技术的发展[J].钢铁,2014,49(7):49.
[4] 张剑君,毛新平,王春峰,等.薄板坯连铸连轧炼钢高效生产技术进步与展望[J].钢铁,2019,54(5):1.
[5] 汪水泽,高军恒,吴桂林,等.薄板坯连铸连轧技术发展现状及展望[J].工程科学学报,2022,44(4):534.
[6] 刘鹏, 郑万, 王君驰, 等. 薄板坯连铸漏斗形结晶器内卷渣行为物理模拟[J]. 中国冶金, 2023, 33(2): 80.
[7] 袁志鹏, 朱立光, 韩毅华, 等. 碱度对高速薄板坯保护渣结晶性能的影响[J]. 中国冶金, 2023, 33(1): 47.
[8] 吴豪, 蔡兆镇, 牛振宇, 等. 薄板坯连铸结晶器铜板热/力行为[J]. 中国冶金, 2021, 31(12): 79.
[9] 杨晓江. 唐钢薄板坯连铸高碳钢65Mn的质量控制[J]. 中国冶金, 2016, 26(12): 36.
[10] 吴志杰,周君,王帅.低碳低硅铝镇静钢表面夹渣原因与控制[J].河北冶金,2022(3):46.
[11] 石树东,胡显堂,张虎成,等.薄板坯连铸保护浇注工艺研究[J].河北冶金,2021(9):39.
[12] 朱立光,郭志红.高速连铸技术研究[J].河北冶金,2021(6):1.
[13] 朱苗勇.新一代高效连铸技术发展思考[J].钢铁,2019,54(8):21.
[14] 朱苗勇.高拉速连铸过程传输行为特征及关键技术探析[J].钢铁,2021,56(7):1.
[15] 张然,许琳,韩泽峰,等.立式组合电磁制动对CSP结晶器内钢液流动及偏流控制[J].中国冶金,2022,32(1):44.
[16] 翟俊, 李欢, 陈法涛, 等. 保护渣对430不锈钢铸坯边部凹陷缺陷的影响[J]. 中国冶金, 2022, 32(5): 102.
[17] 赵子豪, 魏晶晶, 蔡来强,等. 连铸坯实测反问题热弹黏塑性建模与分析[J]. 中国冶金, 2021, 31(12): 39.
[18] 王璞,李少翔,唐海燕,等. 大方坯径向水口旋流效应及其对凝固的影响[J]. 中国冶金, 2019, 29(9): 15.
[19] 李继,陈守杰,王勇源,等.小板坯粘结漏钢原因分析及控制措施[J].河北冶金,2022(4):51.
[20] 董光军,刘元东.结晶器厚度方向锥度对铸坯质量的影响[J].河北冶金,2023(3):33.
[21] 郭银涛.包晶钢结晶器液面波动的原因及控制[J].河北冶金,2021(3):51.
[22] 郑英辉,赵建平,唐广鹏.电磁制动技术在FTSC薄板坯连铸中的应用[J].河北冶金,2021(3):74.
[23] 郑英辉,殷楷,赵建平.薄板坯液芯压下方式的探讨[J].河北冶金,2021(2):53.
[24] 李康康,张彩军,肖鹏程,等.电磁制动下薄板坯结晶器内钢液流动优化[J].连铸,2020(6):9.
[25] 李康康,张彩军,肖鹏程,等.高拉速薄板坯连铸结晶器钢渣界面波动分析[J].连铸,2021(1):9.
[26] 李康康. 高拉速条件下电磁制动对薄板坯结晶器钢液流动的影响[D].唐山:华北理工大学,2021.
[27] 罗衍昭,何文远,王少军,等.2.05 m/min高拉速低碳钢FC控流结晶器的应用[J].连铸,2022(4):72.
[28] 李学凯,张燕超,张彩军,等.电磁制动对薄板坯结晶器内冶金行为的影响[J/OL].钢铁:1-14[2023-03-17].http://kns.cnki.net/kcms/detail/11.2118.TF.20230103.1753.003.html.
[29] LI B, TSUKIHASHI F. Effects of electromagnetic brake on vortex flows in thin slab continuous casting mold[J]. ISIJ International, 2006, 46(12): 1833.
[30] 张路莎,张晓峰,王宝,等.电磁制动对CSP漏斗型结晶器流场和液面波动的影响[J].炼钢,2013,29(3):41.
[31] ZHANG L S, ZHANG X F, WANG B, et al. Numerical analysis of the influences of operational parameters on the braking effect of EMBr in a CSP funnel-type mold[J]. Metallurgical and Materials Transactions B, 2014, 45: 295.
[32] MORALES R D, TANG Y, NITZL G, et al. Design of a submerged entry nozzle for thin slab molds operating at high casting speeds[J]. ISIJ International, 2012, 52(9): 1607.
[33] 刘珂,季晨曦,王胜东,等.MCCR产线110 mm薄板坯结晶器流场的数值模拟[J].钢铁研究学报,2021,33(2):143.
[34] 王皓,王国连,马硕,等.MCCR产线低碳钢高拉速技术研究与应用[J].中国冶金,2022,32(12):88.
[35] CHEN W, REN Y, ZHANG L. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand[J]. JOM, 2018, 70: 2968.
[36] CHEN W, ZHANG L, REN Q, et al. Large eddy simulation on four-phase flow and slag entrainment in the slab continuous casting mold[J]. Metallurgical and Materials Transactions B, 2022, 53(3): 1446.
[37] 文艳梅,韩延申,刘青,等.大方坯结晶器内的多物理场模拟优化[J].钢铁,2018,53(6):53.
[38] 任磊,张立峰,王强强.插钉法研究板坯连铸结晶器液面特征[J].钢铁,2016,51(2):49.
[39] 吉传波,李京社,张同波,等.电磁制动对连铸器内钢水流场的影响及表面检测[J].过程工程学报,2013,13(1):10.
[40] JI C, LI J, TANG H, et al. Effect of EMBr on flow in slab continuous casting mold and evaluation using nail dipping measurement[J]. Steel Research International, 2013, 84(3): 259.
[41] RIETOW B, THOMAS B G. Using nail board experiments to quantify surface velocity in the CC mold[J]. Proceedings of the AISTech, 2008: 1.
PDF(5890 KB)

54

Accesses

0

Citation

Detail

Sections
Recommended

/