Intelligent development and prospect of continuous casting

NIAN YI, LI Jiale, ZHANG Liqiang

Continuous Casting ›› 2024, Vol. 43 ›› Issue (3) : 2-11.

PDF(4259 KB)
Welcome to visit Continuous Casting, July 27, 2025
PDF(4259 KB)
Continuous Casting ›› 2024, Vol. 43 ›› Issue (3) : 2-11. DOI: 10.13228/j.boyuan.issn1005-4006.20240024
Comprehensive Summarization

Intelligent development and prospect of continuous casting

Author information +
History +

Abstract

To enhance the level of intelligence and efficiency in continuous casting, and to achieve the production of high-quality continuous casting billets, the development of intelligent continuous casting systems is indispensable. Intelligent continuous casting is founded on a high degree of automation and informatization, incorporating technologies which based on intelligent perception, big data modeling, remote control via cloud computing, and integrated control through the industrial internet. The essential process of building intelligent platform for continuous casting and the development of overall intelligent platform are described, and the overall idea of building intelligent platform for continuous casting is provided. By taking the intelligent precise-weight cutting of continuous casting billets as a case study, the development philosophy and logical relationships of the sub-models within the intelligent continuous casting subsystem are analyzed, offering insights for the overarching intelligent evolution of continuous casting processes.

Key words

continuous casting / intelligent manufacturing / informatization / digitization / construction of intelligent platform / model design

Cite this article

Download Citations
NIAN YI, LI Jiale, ZHANG Liqiang. Intelligent development and prospect of continuous casting[J]. Continuous Casting, 2024, 43(3): 2-11 https://doi.org/10.13228/j.boyuan.issn1005-4006.20240024

References

[1] 朱立光,郭志红. 高速连铸技术研究[J]. 河北冶金,2021(6): 1.
[2] LI J, SUN Y, AN H, et al. Shape of slab solidification end under non-uniform cooling and its influence on the central segregation with mechanical soft reduction[J]. International Journal of Minerals, Metallurgy and Materials,2021, 28(11): 1788.
[3] 眭志松,康欣蕾,韩德飞,等. 220方低碳合金钢铸坯质量提升的实践[J]. 连铸,2022(5): 108.
[4] 孔意文,秦文彬,刘强,等. 板坯连铸质量提升关键技术的研究与应用[J]. 炼钢, 2021, 37(6): 52.
[5] 张立强,李怡宏. 序言[J]. 连铸, 2022(6): 1.
[6] 杨克枝,张乔英,常正昇. 含Ti铝镇静超低碳钢连铸过程水口堵塞控制实践[J]. 特殊钢, 2020, 41(06): 36.
[7] 滕波,肖华生,杨春宝,等. 智能制造在板坯连铸机中的应用[C]//2019冶金智能制造暨设备智能化管理高峰论坛会论文集. 武汉:中国机电装备维修与改造技术协会冶金分会.2019.
[8] 刘志远,罗志国,顾英杰,等. 旋流钢包长水口对夹杂物碰撞聚合影响的数值模拟[J]. 钢铁研究学报,2021, 33(5): 408.
[9] 程瑾琦,张立强,伏凯旋,等. 钢包长水口吹氩自动控制系统研究与应用[J]. 钢铁研究学报, 2022, 34(6): 562.
[10] 刘斌,王明林,张慧,等. 拉速对板坯倒角结晶器钢液流动的影响[J]. 连铸, 2021(6): 29.
[11] 彭治强,柳前,郭东伟,等. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389.
[12] 雷琳琳,常运合,罗衍昭,等. 浸入式水口及其对板坯连铸结晶器流动行为的影响[J]. 连铸,2023(6): 1.
[13] 徐婷,张立华,李晓谦,等. 稳恒磁场下中间包温度场流场耦合数值模拟[J]. 特种铸造及有色合金, 2015, 35(4): 365.
[14] 刘金刚,刘浏,王新华. 中间包夹杂物的去除与控制新技术[J]. 炼钢, 2006(02): 30.
[15] 韩继强,王彦祥,许红玉. 中间包温度优化工艺实践[J]. 中国冶金, 2013, 23(08): 34.
[16] 吴海亮.方坯结晶器液位控制系统设计与应用[D]. 沈阳:东北大学, 2011.
[17] XU Y, XU R, FAN Z, et al. Analysis of cracking phenomena in continuous casting of 1Cr13 stainless steel billets with final electromagnetic stirring[J]. International Journal of Minerals Metallurgy and Materials, 2016, 23(05): 534.
[18] 安航航,包燕平,王敏,等. 凝固末端电磁搅拌和轻压下复合技术对大方坯高碳钢偏析和中心缩孔的影响[J]. 工程科学学报, 2017, 39(7): 996.
[19] 李少翔,王璞,兰鹏,等. 圆坯凝固末端电磁搅拌作用下的流动与传热行为[J]. 工程科学学报,2019, 41(6): 748.
[20] 王勇. 结晶器电磁搅拌对方坯中非金属夹杂物去除的影响研究[J]. 钢铁钒钛, 2022, 43(1): 131.
[21] 何建国,邓安元,许秀杰,等. 电磁搅拌宽厚板结晶器内钢液流动和液面波动[J]. 连铸,2022(4): 50.
[22] 王皓,陈志军,郄俊懋,等. 二冷区电磁搅拌在宽厚板铸机的研究与应用[J]. 连铸, 2015, 40(2): 23.
[23] 冯军,陈伟庆,王晓峰,等. 凝固末端电磁搅拌对高碳钢内部质量的影响[J]. 钢铁, 2006(11): 26.
[24] 李红光,陈天明,陈亮,等. 电磁搅拌对重轨钢凝固组织及均质性的影响[J]. 钢铁钒钛, 2021, 42(1): 126.
[25] 杨宝,张慧,王明林,等. 连铸板坯电磁搅拌技术的发展现状及讨论[J]. 钢铁钒钛,2021, 42(5): 149.
[26] 朱苗勇. 新一代高效连铸技术发展思考[J]. 钢铁, 2019, 54(8): 21.
[27] 何冰,米进周,王旭英,等. 连铸生产线智能化方向的初步探究[J]. 重型机械, 2017(5): 1.
[28] 任国振,陈松.连铸结晶器振动液压伺服系统建模与控制[J/OL].材料与冶金学报,1-10[2024-04-08].http://kns.cnki.net/kcms/detail/21.1473.TF.20230606.1615.002.html.
[29] 张军卫,郝文权,颜昊,等. 15CrMoG矩形坯保护渣优化实践[J]. 特殊钢, 2023, 44(4): 70.
[30] 冯为民,薛井恒,邢国成,等. Cr13型马氏体不锈钢方坯连铸保护渣的开发[J]. 特殊钢, 2023, 44(3): 53.
[31] 杨志雄,朱国军,张年华,等. 小方坯结晶器正弦振动参数的优化[J]. 连铸,2020(6): 74.
[32] 张炯明,周青海,尹延斌,等. 连铸板坯三维二冷动态配水与精准压下研究与应用[J]. 工程科学学报. 2021, 43(12): 1666.
[33] 李杰,孙彦辉,郑京辉,等. 板坯动态二冷配水控制模型改进和应用[J]. 连铸,2020(2): 27.
[34] 曹雅林,张炯明,宋炜,等. 高强钢板坯二冷三维动态配水的在线控制[J]. 连铸, 2017(4): 26.
[35] 张群亮. 宝钢在线二冷控制模型的研发与应用[J]. 钢铁, 2012, 47(3): 30.
[36] 李大明,林俊,贺佳佳,等. 低碳钢连铸轻压下工艺的技术研发和应用[J]. 连铸, 2023(2): 52.
[37] NAQASH A, ZHANG L Q, ZHOU H W, et al. Elucidation of void defects by soft reduction in medium carbon steel via EBSD and X-ray computed tomography[J]. Materials and Design, 2021, 209.
[38] CHENG Y, MIN W, MING C, et al. Effect of dynamic soft reduction range and amount on central segregation in bloom and the resulting microstructure in the rod of GCr15-bearing steel[J]. Steel Research International, 2022, 93(11)23.
[39] JI C, LUO S, ZHU M. Analysis and application of soft reduction amount for bloom continuous casting process[J]. ISIJ International, 2014, 54(3): 504.
[40] 陈小龙,年义,熊良友,等. 连铸轻压下对中碳钢内部孔隙裂纹的影响[J]. 现代交通与冶金材料, 2022, 2(3): 51.
[41] 从俊强,徐学华,米进周,等. 智能化铸坯质量在线判定系统开发[J]. 热加工工艺,2018, 47(1): 113.
[42] 梅康元,米进周,郭岩嵩,等. 连铸生产线智能化技术研究[J]. 工业控制计算机, 2021, 34(7): 139.
[43] 侯振宇,题兴宇. 工业智能化背景下大数据的应用[J]. 信息系统工程, 2023(6): 20.
[44] 周士凯,徐学华,王宝峰,等. 连铸智能化物理模拟创新平台的建设与实践[J]. 连铸, 2018(2): 20.
[45] 孙彦广. 钢铁工业数字化、网络化、智能化制造技术发展路线图[J]. 冶金管理, 2015(9): 4.
[46] 肖丽俊,王海军,项利,等. 薄板坯连铸连轧工艺下Hi-B钢的组织及织构[J]. 工程科学学报, 2016, 38(02): 241.
[47] 陈权. 炼钢连铸车间智能化行车改造及应用[J]. 自动化应用, 2021(11): 46.
[48] 孙韶元,李世平,王俊然,等. 连铸二冷控制的智能化方法[J]. 北京科技大学学报,1997(2): 188.
[49] 李伟,黄大军,吴帅,等. 连铸坯在线定重切割技术工艺实践[J]. 连铸,2022(5): 101.
[50] 周从锐,熊良友,吴建军,等. 定重切割技术在小方坯连铸机上的应用[J]. 金属世界, 2022(6): 75.
PDF(4259 KB)

44

Accesses

0

Citation

Detail

Sections
Recommended

/