基于中子布拉格边成像的材料表征技术进展

王杨文, 徐平光, 苏玉华, 马艳玲, 王红鸿

物理测试 ›› 2024, Vol. 42 ›› Issue (4) : 32-41.

PDF(4148 KB)
PDF(4148 KB)
物理测试 ›› 2024, Vol. 42 ›› Issue (4) : 32-41. DOI: 10.13228/j.boyuan.issn1001-0777.20230085
测试技术

基于中子布拉格边成像的材料表征技术进展

  • 王杨文1, 徐平光2,3, 苏玉华4, 马艳玲5, 王红鸿1
作者信息 +

Progress of material characterization techniques based on neutron Bragg-edge transmission imaging

  • 王杨文1, 徐平光2,3, 苏玉华4, 马艳玲5, 王红鸿1
Author information +
文章历史 +

摘要

随着散裂中子源大科学装置技术的迅速发展,可获得的中子束通量得到显著提高,中子成像技术也获得了进一步的发展。由于中子束通量的限制,传统的中子成像技术需使用波长范围较宽的中子束以获得较高的通量条件。近年来,通过利用大型加速器散裂中子源获得的高通量脉冲中子束,基于布拉格边效应的能量(波长)分辨中子成像技术,即中子布拉格边透射成像技术,因其具备高能量分辨率、空间分辨率和能够探测晶体学信息的特点,显示出了日益广阔的应用潜力。简要介绍了该技术的基本原理,评述了其在残余应变、相组成、位错密度和取向织构表征等方面的多个应用研究范例,以期对相关技术的推广普及发挥出积极的作用。

Abstract

With the rapid development of spallation neutron source large-scale scientific facility technologies, the neutron beam flux that can be obtained has been significantly enhanced, and the neutron imaging technique has been also further developed. Due to the limitation of neutron beam flux, the conventional neutron imaging techniques require neutron beam with wide wavelength range to obtain relatively high flux conditions. In recent years, the high-flux pulsed neutron beam has been obtained via the large accelerator spallation neutron source. The energy (wavelength) resolved neutron imaging technique based on Bragg-edge effect, i.e., neutron Bragg-edge transmission imaging technology, has showed a wide application potential due to its high energy resolution, high spatial resolution and the ability to detect the crystallographic information. The fundamental principle of this technology was briefly introduced. Some application cases in residual strain, phase composition, dislocation density and oriented structure characterization were reviewed to play a positive role in the popularization of relevant techniques.

关键词

组成相 / 散裂中子源 / 位错密度 / 残余应变 / 取向织构 / 中子布拉格边透射成像

Key words

neutron Bragg-edge transmission imaging / oriented structure / residual strain / spallation neutron source / phase composition / dislocation density

图表

引用本文

导出引用
苏玉华, 马艳玲, 王杨文, . 基于中子布拉格边成像的材料表征技术进展[J]. 物理测试, 2024, 42(4): 32-41 https://doi.org/10.13228/j.boyuan.issn1001-0777.20230085
SU Yuhua, MA Yanling, WANG Yangwen, et al. Progress of material characterization techniques based on neutron Bragg-edge transmission imaging[J]. Physics Examination and Testing, 2024, 42(4): 32-41 https://doi.org/10.13228/j.boyuan.issn1001-0777.20230085

参考文献

[1] Kardjilov N, Manke I, Hilger A, et al. Neutron imaging in materials Science [J]. Materials Today, 2011, 14(6): 248.
[2] XU P G, Akita K, Suzuki H, et al. Establishment and optimization of angle dispersive neutron diffraction bulk texture measurement environments [J]. Materials Transactions, 2012, 53(11): 1831.
[3] XU P G, Liss K D. Multiple wavelengths texture measurement using angle dispersive neutron diffraction at WOMBAT [J]. Quantum Beam Science, 2021, 5(2): 11.
[4] XU P G, Tomota Y, Arakaki Y, et al. Evaluation of austenite volume fraction in TRIP steel sheets using neutron diffraction [J]. Materials Characterization, 2017, 127: 104.
[5] XU P G, Harjo S, Ojima M, et al. High stereographic resolution texture and residual stress evaluation using time-of-flight neutron diffraction [J]. Journal of Applied Crystallography, 2018, 51: 746.
[6] SU Y H, Tomota Y, Harjo S, et al. Deformation-induced grain coalescence in an electrodeposited pure iron sheet studied by in situ neutron diffraction and electron backscatter diffraction [J]. Acta Materialia, 2012, 60(8): 3393.
[7] SU Y H, Tomota Y, Harjo S. Microstructural changes by annealing in ultrafine-grained electrodeposited pure iron [J]. Metallurgical and Materials Transactions A, 2014, 45(2): 990.
[8] GONG W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Materialia, 2015, 85: 243.
[9] Harjo S, Kubota S, GONG W, et al. Neutron diffraction monitoring of ductile cast iron under cyclic tension-compression [J]. Acta Materialia, 2020, 196: 584.
[10] XU P G, Ikeda Y, Hakoyama T, et al. In-house texture measurement using a compact neutron source [J]. Journal of Applied Crystallography, 2020, 53(2): 444.
[11] Taylor A. Progress at the ISIS facility [J]. Physica B, 2006, 385/386: 728.
[12] Henderson S, Abraham W, Aleksandrov A, et al. The Spallation Neutron Source accelerator system design [J]. Nuclear Instruments and Methods in Physics Research Section A, 2014, 763: 610.
[13] Nagamiya S. J-PARC program overview [J]. Nuclear Physics A, 2009, 827(1/2/3/4): 179c.
[14] Garoby R, Vergara A, Danared H, et al. The European Spallation Source design [J]. Physica Scripta, 2018, 93(1): 014001.
[15] XU J, XIA Y G, LI Z D, et al. Multi-physics instrument: Total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source [J]. Nuclear Instruments and Methods in Physics Research Section A, 2021, 1013(1): 165642.
[16] CHEN J, KANG L, LU H L, et al. The general purpose powder diffractometer at CSNS [J]. Physica B, 2018, 551: 370.
[17] LUO T, HE Z Q, CHENG H, et al. A new laser-based alignment method for the multi-slits VSANS in high precision [J]. Nuclear Instruments and Methods in Physics Research Section A, 2021, 1010: 165526.
[18] YANG J Q, ZHOU J R, ZHANG L J, et al. Recent measurements at the CSNS towards the construction of a nMCP detector for the energy resolved neutron imaging instrument [J]. Nuclear Instruments and Methods in Physics Research Section A, 2021, 1003: 165322.
[19] Mochiki K, Kobayashi H. Practical applications of neutron computeed tomography [J]. Radioisotopes, 2008, 57: 153.
[20] Garbe U, Randalla T, Hughesa C, et al. A new neutron radiography/tomography/imaging station DINGO at OPAL [J]. Physics Procedia, 2015, 69: 27.
[21] Kardjilov N, Manke I, Woracek R, et al. Advances in neutron imaging [J]. Materials Today, 2018, 21(6): 652.
[22] Woracek R, Santisteban J, Fedrigo A, et al. Diffraction in neutron imaging-A review [J]. Nuclear Instruments and Methods in Physics Research Section A, 2018, 878: 141.
[23] Lehmann E H, Frei G, Vontobel P, et al. The energy-selective option in neutron imaging [J]. Nuclear Instruments and Methods in Physics Research Section A, 2009, 603(3): 429.
[24] 王雨,王洪立,贺林峰,等. 能量选择法中子照相技术[J]. 核技术,2015,38(5):29.
[25] 贡志锋,张书彦,马艳玲,等. 中子成像技术应用[J]. 中国科技信息,2021(8):84.
[26] KANG M, WOO W, LEE Y K, et al. Neutron diffraction analysis of stacking fault energy in Fe-18Mn-2Al-0.6C twinning-induced plasticity steels [J]. Materials Letters, 2012, 76: 93.
[27] TANG L, WANG L, WANG M S, et al. Synergistic deformation pathways in a TWIP steel at cryogenic temperatures: In situ neutron diffraction [J]. Acta Materialia, 2020, 200: 943.
[28] Marrow T J, LIU D, Barhli S M, et al. In situ measurement of the strains within a mechanically loaded polygranular graphite [J]. Carbon, 2016, 96: 285.
[29] Tremsin A S, Vallerga J V. Unique capabilities and applications of microchannel plate (MCP) detectors with medipix/timepix readout [J]. Radiation Measurements, 2020, 130: 106228.
[30] SU Y H, Oikawa K, Harjo S, et al. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates [J]. Materials Science and Engineering: A, 2016, 675: 19.
[31] Fedrigo A, Strobl M, Williams A R, et al. Neutron imaging study of ‘pattern-welded’ swords from the Viking Age [J]. Archaeological and Anthropological Sciences, 2018, 10(6): 1249.
[32] Sato H, Kamiyama T, Iwase K, et al. Pulsed neutron spectroscopic imaging for crystallographic texture and microstructure [J]. Nuclear Instruments and Methods in Physics Research, Section A, 2011, 651(1): 216.
[33] Reid A, Marshall M, Kabra S, et al. Application of neutron imaging to detect and quantify fatigue cracking [J]. International Journal of Mechanical Sciences, 2019, 159(4): 182.
[34] Lehmann E H, Peetermans S, Josic L, et al. Energy-selective neutron imaging with high spatial resolution and its impact on the study of crystalline-structured materials [J]. Nuclear Instruments and Methods in Physics Research, Section A, 2014, 735: 102.
[35] SU Y H, Oikawa K, Shinohara T, et al. Time-of-flight neutron transmission imaging of martensite transformation in bent plates of a Fe-25Ni-0.4C alloy [J]. Physics Procedia, 2017, 88: 42.
[36] Hendriks J N, Gregg A W T, Jackson R R, et al. Tomographic reconstruction of triaxial strain fields from Bragg-edge neutron imaging [J]. Physical Review Materials, 2019, 3(11): 113803.
[37] Ziesche R F, Tremsin A S, HUANG C, et al. 4D Bragg edge tomography of directional ice templated graphite electrodes [J]. Journal of Imaging, 2020, 6(12): 136.
[38] Betz B, Rauscher P, Harti R P, et al. In-situ visualization of stress-dependent bulk magnetic domain formation by neutron grating interferometry [J]. Applied Physics Letters, 2016, 108(1): 012405.
[39] SU Y H, Oikawa K, Shinohara T, et al. Residual stress relaxation by bending fatigue in induction-hardened gear studied by neutron Bragg edge transmission imaging and X-ray diffraction [J]. International Journal of Fatigue, 2023,174: 107729.
[40] Windsor C G. Pulsed Neutron Scattering [M]. London: Taylor & Francis Ltd., 1981.
[41] Sato H, Kamiyama T, Kiyanagi Y. A rietveld-type analysis code for pulsed neutron Bragg-edge transmission imaging and quantitative evaluation of texture and microstructure of a welded α-iron plate [J]. Materials Transactions, 2011, 52(6): 1294.
[42] Nakajima K, Kawakita Y, Itoh S, et al. Materials and life science experimental facility (MLF) at the Japan proton accelerator research complex II: Neutron scattering instruments [J]. Quantum Beam Science, 2017, 1(3): 9.
[43] Shinohara T, Kai T, Oikawa K, et al. The energy-resolved neutron imaging system, RADEN [J]. Review of Scientific Instruments, 2020, 91(4): 043302.
[44] Oikawa K, SU Y H, Kiyanagi R, et al. Recent progress on practical materials study by Bragg edge imaging at J-PARC [J]. Physica B, 2018, 551: 436.
[45] Shinohara T, Sakai K, Ohi M, et al. Quantitative magnetic field imaging by polarized pulsed neutrons at J-PARC [J]. Nuclear Instruments and Methods in Physics Research, Section A, 2011, 651: 121.
[46] Hiroi K, Shinohara T, Hayashida H, et al. Development of a polarization analysis method for visualization of the magnetic field distribution in a small electric transformer using pulsed polarized neutron imaging [C]//Proceedings of the International Conference on Neutron Optics (NOP2017). Nara, 2018: 011030.
[47] Kai T, Maekawa F, Oshita H, et al. Visibility estimation for neutron resonance absorption radiography using a pulsed neutron source [J]. Physics Procedia, 2013, 43: 11.
[48] XU P G, WANG Y W, SU Y H, et al. Texture gradient evaluation of cold bent high-Mn steel plate using RADEN and RESA neutron instruments [C]//Poster of 11th Workshop on Neutron Wavelength Dependent Imaging (NEUWAVE-11). Japan, 2023: 23.
[49] Woracek R, Penumadu D, Kardjilov N, et al. Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading [J]. Journal of Applied Physics, 2011, 109(9): 093506.
[50] XIE Q, SONG G, Gorti S, et al. Applying neutron transmission physics and 3D statistical full-field model to understand 2D Bragg-edge imaging [J]. Journal of Applied Physics, 2018, 123(7): 074901.
[51] Tremsin A S, Yau T Y, Kockelmann W. Non-destructive examination of loads in regular and self-locking spiralock© threads through energy-resolved neutron imaging [J]. Strain, 2016, 52(6): 548.
[52] Oliveira J P, Lalonde A D, Ma J. Processing parameters in laser powder bed fusion metal additive manufacturing [J]. Materials & Design, 2020, 193: 108762.
[53] Oliveira J P, Santos T G, Miranda R M. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice [J]. Progress in Materials Science, 2020, 107: 100590.
[54] Tremsin A S, Gao Y, Makinde A, et al. Monitoring residual strain relaxation and preferred grain orientation of additively manufactured Inconel 625 by in-situ neutron imaging [J]. Additive Manufacturing, 2021, 46: 102130.
[55] WANG Y W, WANG H H, SU Y H, et al. Cryogenic impact fracture behavior of a high-Mn austenitic steel using electron backscatter diffraction and neutron Bragg-edge transmission imaging [J]. Materials Science and Engineering: A, 2023, 887(7): 145768.
[56] SU Y H, Oikawa K, Shinohara T, et al. Neutron Bragg-edge transmission imaging for microstructure and residual strain in induction hardened gears [J]. Scientific Reports, 2021, 11(1): 4155.
[57] Griesche A, Pfretzschner B, Taparli U A, et al. Time-resolved neutron Bragg-edge imaging: A case study by observing martensitic phase formation in low temperature transformation steel during GTAW [J]. Applied Sciences, 2021, 11(22): 10886.
[58] Ungár T. Microstructural parameters from X-ray diffraction peak broadening [J]. Scripta Materialia, 2004, 51(8): 777.
[59] Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram [J]. Acta Metallurgica, 1953, 1(1): 22.
[60] Himabindu B, Latha Devi N S M P, Rajini Kanth B. Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models: A review [J]. Materials Today: Proceedings, 2021, 47(10/11): 4891.
[61] Das Bakshi S, Sinha D, Ghosh Chowdhury S. Anisotropic broadening of XRD peaks of α′-Fe: Williamson-Hall and Warren-Averbach analysis using full width at half maximum (FWHM) and integral breadth (IB) [J]. Materials Characterization, 2018, 142: 144.
[62] Ghosh J, Chattopadhayay S K, Meikap A K, et al. Microstructure characterization of titanium-base aluminium alloys by X-ray diffraction using Warren-Averbach and Rietveld method [J]. Journal of Alloys and Compounds, 2008, 453(1/2): 131.
[63] Sato H, Iwase K, Kamiyama T, et al. Simultaneous broadening analysis of multiple Bragg edges observed by wavelength-resolved neutron transmission imaging of deformed low-carbon ferritic steel [J]. ISIJ International, 2020, 60(6): 1254.
[64] Akama D, Tsuchiyama T, Takaki S. Evaluation of dislocation density in cold-worked iron as measured via X-ray diffractometry [J]. Journal of the Society of Materials Science, Japan, 2017, 66(7): 522.
[65] Takaki S, Masumura T, Jiang F, et al. Effect of instrumental correction on X-ray line profile analysis in cold rolled ferritic steel [J]. ISIJ International, 2018, 58(6): 1181.
[66] SUN T, Tremsin A S, Roy M J, et al. Investigation of residual stress distribution and texture evolution in AA7050 stationary shoulder friction stir welded joints [J]. Materials Science and Engineering: A, 2018, 712: 531.
[67] Watanabe K, Minniti T, Sato H, et al. Cross-sectional imaging of quenched region in a steel rod using energy-resolved neutron tomography [J]. Nuclear Instruments and Methods in Physics Research, Section A, 2019, 944: 162532.
[68] Sato H, Watanabe K, Kiyokawa K, et al. Further improvement of the RITS code for pulsed neutron Bragg-edge transmission imaging [J]. Physics Procedia, 2017, 88: 322.
[69] Sato H, Sato M, SU Y H, et al. Improvement of Bragg-edge neutron transmission imaging for evaluating the crystalline phase volume fraction in steel composed of ferrite and austenite [J]. ISIJ International, 2021, 61(5): 1584.
[70] Dollase W A. Correction of intensities for preferred orientation in powder diffractometry: Application of the March model [J]. Journal of Applied Crystallography, 1986, 19(4): 267.
[71] Dessieux L L, Stoica A D, Bingham P R, et al. Neutron transmission simulation of texture in polycrystalline materials [J]. Nuclear Instruments and Methods in Physics Research Section B, 2019, 459: 166.
[72] Malamud F, Santisteban J R, Vicente Alvarez M A, et al. An optimized single-crystal to polycrystal model of the neutron transmission of textured polycrystalline materials [J]. Journal of Applied Crystallography, 2023, 56: 143.
[73] Vicente Alvarez M A V, Malamud F, Santisteban J R. Determination of crystallographic texture in polycrystalline materials from wavelength resolved neutron transmission experiments: Application to high symmetry crystals [J]. Journal of Applied Crystallography, 2023, 56(6): 1721.

基金

国家自然科学基金项目(51971165);湖北省重点研发计划项目(2021BID003)

PDF(4148 KB)

121

Accesses

0

Citation

Detail

段落导航
相关文章

/