Prediction discussion about stress rupture life of ZL116 cast aluminum alloy

ZANG Haoliang, CUI Wenming, LI Zhutie, ZHANG Xiaochen, ZHANG Kai, WANG Jixing

Physics Examination and Testing ›› 2024, Vol. 42 ›› Issue (2) : 19-25.

PDF(3500 KB)
PDF(3500 KB)
Physics Examination and Testing ›› 2024, Vol. 42 ›› Issue (2) : 19-25. DOI: 10.13228/j.boyuan.issn1001-0777.20230093
Test and Research

Prediction discussion about stress rupture life of ZL116 cast aluminum alloy

Author information +
History +

Abstract

The stress rupture life of ZL116 cast aluminum alloy under different stress conditions at 200 ℃ was studied through a series of stress rupture tests. The double logarithmic stress-strain curve of stress rupture life was obtained by isotherm extrapolation model and linear regression operation. The median curve formula, 50% confidence 99.9% survival rate curve formula, and 95% confidence 97.7% survival rate curve formula were obtained. The theoretical calculation data of ZL116 at 200 ℃ were compared with the experimental data. The results showed that the theoretical calculation data matched well with the experimental data, realizing the possibility of predicting the stress rupture life through the given durability strength. This pethood could save design costs and improve the equipment safety.

Key words

ZL116 / stress rupture life prediction / creep fracture / stress rupture strength

Cite this article

Download Citations
CUI Wenming, ZHANG Kai, WANG Jixing, et al. Prediction discussion about stress rupture life of ZL116 cast aluminum alloy[J]. Physics Examination and Testing, 2024, 42(2): 19-25 https://doi.org/10.13228/j.boyuan.issn1001-0777.20230093

References

[1] 张春波,王祝堂. 航空航天器铸造铝合金(2) [J]. 轻合金加工技术,2012,40(12):9.

[2] 张春波,王祝堂. 航空航天器铸造铝合金(1) [J]. 轻合金加工技术,2012,40(11):5.
[3] 兰乔,刘保良,常治宇,等. 轻合金铸造技术发展历程与展望[J]. 铸造技术,2021,42(2):141.
[4] GUO J T, YUAN C, YANG H C, et al. Creep-rupture behavior of a directionally solidified nickel-base superalloy[J]. Metall Mater Trans A, 2001,31A:1103.
[5] WANG Y, SHI L, HAN C, et al. Creep rupture mechanisms and life prediction of IN617 for VHTR applications[J]. Materials Science & Engineering, A Structural Materials: Properties, Misrostructure and Processing, 2021(812):812.
[6] 龚忠兴,张正,王攀智,等. 2219铝合金环件孔洞缺陷分析[J]. 物理测试,2023,41(3):16.
[7] 彭志方,党莹樱,彭芳芳.9%~12% Cr 铁素体耐热钢持久性能评估方法的研究[J].金属学报,2010,46(4):435.
[8] 姜巨福,李明星,王迎. 铝合金挤压铸造技术研究进展[J].中国有色金属学报,2021,31(9):2313.
[9] LI D, WEI D S. Creep deformation simulation of notched specimens of ZSGH4169 alloy based on θ-projection method[J]. Materials for Mechanical Engineering, 2020, 44(8):63.
[10] ZHOU B S, TANG X Y, WANG Z D, et al. A finite element model of local damage in creep rupture[J]. Journal of East China University of Science and Technology, 2001(3): 297.
[11] 刘鑫刚,王国军,陈雷,等. 铸态6061铝合金均匀化热处理工艺[J]. 材料热处理学报,2016,37(7):77.
[12] XIAO Q F, HUANG J W, JIANG Y G, et al. Effects of minor Se and Zr additions on mechanical properties and microstructure evolution of Al-Zn-Mg-Cu alloys[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6): 1429.
[13] LIU H,XUAN F Z.A new model of creep rupture data extrapolation based on power processes[J].Engineering Failure Analysis,2011,18(8):2324.
[14] 李勇,许鹤君,巴发海.蠕变强度外推数据处理的EXCEL方法[J]. 物理测试,2018,36(5):19.
[15] 吴倩颖,杨雷岗. 基于C#持久蠕变强度外推功能的实现[J]. 物理测试,2021,39(4):56.
PDF(3500 KB)

27

Accesses

0

Citation

Detail

Sections
Recommended

/