退火温度对冷轧中锰钢组织性能和断裂行为的影响

杨丽芳,魏焕君,孙力,信瑞山,马成,潘进

钢铁 ›› 2019, Vol. 54 ›› Issue (11) : 80-87.

PDF(33709 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月28日 星期一
PDF(33709 KB)
钢铁 ›› 2019, Vol. 54 ›› Issue (11) : 80-87. DOI: 10.13228/j.boyuan.issn0449749x.20190073
钢铁材料

退火温度对冷轧中锰钢组织性能和断裂行为的影响

  • 杨丽芳1,魏焕君2,孙力1,信瑞山1,马成1,潘进1
作者信息 +

Effect of annealing temperatures on microstructures,mechanical #br# properties and fracture behavior of a coldrolled mediumMn steel

  • 杨丽芳1,魏焕君2,孙力1,信瑞山1,马成1,潘进1
Author information +
文章历史 +

摘要

为了系统研究临界区退火和全奥氏体区退火对中锰钢性能的影响,为中锰钢的实际应用提供理论基础,在650~900 ℃范围内系统研究了冷轧中锰钢的显微组织和力学性能,并通过断口形貌观察分析了试验钢的断裂特性。结果表明,试验钢在临界区退火的综合力学性能明显优于全奥氏体区退火。650~750 ℃退火时,抗拉强度在1 000 MPa左右,强塑积超过30 GPa·%,发生韧性断裂,宏观上可以观察到明显的层状裂纹,微观下为大量韧窝;在800~900 ℃退火时,抗拉强度在743~1 154 MPa范围内波动较大,强塑积不足10 GPa·%,断口平整,发生脆性沿晶断裂;退火温度为650 ℃时,组织为片层状和等轴状的奥氏体、铁素体双相及大量渗碳体;随着退火温度的升高,渗碳体逐渐溶解消失,等轴状组织所占体积分数明显增加,奥氏体体积分数也不断增加,在750 ℃时达到52.2%;退火温度为800 ℃时,有马氏体产生,奥氏体体积分数下降;退火温度为900 ℃时,组织基本为马氏体,残留奥氏体体积分数仅为14.6%。

Abstract

 To systematically study the effects of intercritically annealing and austenite reverted transformation annealing on the properties of mediumMn steel and provide the theoretical basis for its practical application,effects of annealing temperature in a range of 650-900 ℃ on microstructures,mechanical properties and fracture behavior were studied for a coldrolled mediumMn steel. The results show that the comprehensive mechanical properties of specimen after intercritical annealing were obviously superior to the specimen by austenite reverted transformation annealing. When annealed at 650-750 ℃,the tensile strength of about 1 000 MPa and product of strength and ductility of above 30 GPa·% were obtained. The fracture exhibits distinct layerlike cracks and massive dimples. When the annealing temperatures were 800-900 ℃,the tensile strength fluctuates greatly in the range of 743-1 154 MPa while the products of strength and ductility were below 10 GPa·%. Meanwhile,the brittle intergranular fracture occurred due to the poor elongation and the fracture surfaces were flat. Annealed at 650 ℃,the microstructures consist of equiaxed/lamellar ferrite and austenite,as well as abundant cementite. With increasing temperature,the cementite gradually dissolved and disappeared,and the volume percent of austenite and equiaxed grains increased. When the annealing temperature was 750 ℃,52.2% austenite was obtained. Martensite was generated at 800 ℃. With further increasing annealing temperature,austenite volume percent decreased,and only 14.6% austenite was retained at 900 ℃.

关键词

冷轧中锰钢 / 退火工艺 / 微观组织 / 力学性能 / 断口形貌

Key words

  / coldrolled mediumMn steel; annealing; microstructure; mechanical property; fracture morphology

图表

引用本文

导出引用
杨丽芳, 魏焕君, 孙力, . 退火温度对冷轧中锰钢组织性能和断裂行为的影响[J]. 钢铁, 2019, 54(11): 80-87 https://doi.org/10.13228/j.boyuan.issn0449749x.20190073
YANG Lifang1, WEI Huanjun2, SUN Li1, et al. Effect of annealing temperatures on microstructures,mechanical #br# properties and fracture behavior of a coldrolled mediumMn steel[J]. Iron and Steel, 2019, 54(11): 80-87 https://doi.org/10.13228/j.boyuan.issn0449749x.20190073

参考文献

[1] 康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁, 2008, 43(6):1-7.
[2] 王利, 朱晓东, 张丕军, et al. 汽车轻量化与先进的高强度钢板[J]. 宝钢技术, 2003(5):53-59.
[3] Shi J, Sun X, Wang M , et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scripta Materialia, 2010, 63(8):815-818.
[4] Cao W Q , Wang C , Shi J , et al. Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing[J]. Materials Science & Engineering A, 2011, 528(22):6661-6666.
[5] Seo C H , Kwon K H , Choi K , et al. Deformation behavior of ferrite–austenite duplex lightweight Fe–Mn–Al–C steel[J]. Scripta Materialia, 2012, 66(8):519-522.
[6] Suh D W , Park S J , Lee T H , et al. Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel[J]. Metallurgical & Materials Transactions A, 2010, 41(2):397-408.
[7] Arlazarov A , M. Gouné, Bouaziz O , et al. Evolution of microstructure and mechanical properties of medium Mn steels during double annealing[J]. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2012, 542(none):31-39.
[8] 高灵清, 李慧, 朱金华. 中锰奥氏体钢的脆性断裂研究[J]. 材料开发与应用, 2013, 28(5).
[9] Sun J , Jiang T , Sun Y , et al. A lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlement[J]. Journal of Alloys and Compounds, 2017, 698:390-399.
[10] 刘军. 逆相变退火中锰钢断裂机制的研究[D]. 2014.
[11] Luo H, Dong H, Huang M. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels[J]. Materials & Design, 2015, 83:42-48.
[12] Yang F, Luo H, Pu E, et al. On the characteristics of Portevin–Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity[J]. International Journal of Plasticity, 2018, 103:188-202.
[13] Yang F, Luo H, Hu C, et al. Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel[J]. Materials Science & Engineering A, 2017, 685:115-122.
[14] Cai Z H, Ding H, Misra R D K, et al. Unique serrated flow dependence of critical stress in a hot-rolled Fe–Mn–Al–C steel[J]. Scripta Materialia, 2014, 71(2):5-8.
[15] Misra R D K, Thompson S W, Hylton T A, et al. Microstructures of hot-rolled high-strength steels with significant differences in edge formability[J]. Metallurgical & Materials Transactions A, 2001, 32(3):745-760.
[16] Choi J Y, Si W H, Min C H, et al. Extended strain hardening by a sequential operation of twinning induced plasticity and transformation induced plasticity in a low Ni duplex stainless steel[J]. Metals & Materials International, 2014, 20(5):893-898.
[17] 杨富强,宋仁伯,孙挺,等.Fe-Mn-Al轻质高强钢组织和力学性能研究[J].金属学报,2014,50(08):897-904.
[18] 马鸣图, 吴宝榕.双相钢-物理和力学冶金[ M].北京:冶金工业出版社,2009.]
[19] 周磊, 黄澍, 符仁钰,等. 含铝TRIP1000钢的断裂机制[J]. 钢铁研究学报, 2011, 23(5):29-33.

基金

塑性加工过程中缺陷修复与动载力学性能变化规律研究

PDF(33709 KB)

16

Accesses

0

Citation

Detail

段落导航
相关文章

/