采用Thermo-Calc热力学软件与试验研究相结合的方法,模拟分析了3种不同铝质量分数的ZG1Cr10NiAlMoVNbN耐热钢在200~1 600 ℃之间存在的平衡相和非平衡凝固过程,研究了3种试验钢的显微组织,并对其进行了冲击试验。结果表明:在1 050 ℃时,质量分数为0.10%的铝试验钢的平衡相为γ单相;质量分数为0.91%的铝试验钢的平衡相为γ相+δ铁素体相;质量分数为3.67%的铝试验钢的平衡相为δ铁素体单相,模拟结果与试验结果较为吻合,同时,随着钢中铝质量分数的升高,冲击功大幅下降,冲击试样的断裂方式由韧窝断裂变为解理断裂。
Abstract
With Thermo-Calc software and experiments, the equilibrium phases existing in ZG1Cr10NiAlMoVNbN heat-resistant steel from 200 to 1 600 ℃ and equilibrium solidification process were calculated. The microstructures and impact properties of three kinds of tested steels were investigated. Results show that the equilibrium phases of the tested steel containing 0.10%Al was single γ at 1 050 ℃, after the heat-treatment, austenitic transformed into martensitic completely, which is consistent with the experimental results. The equilibrium phases of the tested steel containing 0.91%Al were γ+δ, which agrees well with the observed microstructure that consists of martensitic and austenitic. And the equilibrium phases of the tested steel containing 3.67%Al was single δ, which agrees well with the experimental results. Meanwhile, the impact energy reduced significantly with the increase of Aluminum content, the fracture mechanism changed from the dimple fracture to cleavage fracture.
关键词
关键词:耐热钢 /
Thermo-Calc /
δ 铁素体 /
冲击性能
{{custom_keyword}} /
Key words
Key words: heat resistant steel /
Thermo-Calc /
δ-ferrite /
impact properties
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]纪世东.发展超超临界发电机组若干技术问题探讨[J].电力设备, 2003, 4(3):27-31
[2]赵双群,谢锡善.超超临界锅炉过热器管材的高温组织稳定性及其改进研究[J].材料导报, 2004, 18(8):131-133
[3]刘致远,曾丽,喇培清等.对合金高温抗氧化性能的影响[J].热加工工艺, 2007, 36(22):24-25
[4]曾丽,陈纪东,喇培清等.热处理对加 改性 合金组织的影响[J].热加工工艺, 2010, 39(4):93-104
[5]包汉生,程世长,刘正东等.化学成分和热处理温度对耐热钢中δ-铁素体含量的影响[J].钢铁研究学报, 2007, 12(44):74-78
[6] Fujio Abe, Torsten-Ulf Kern, Viswanthan R.Creep-Resistant Steels[M]. Cambridge: Woodhead Publishing Limited, 2008
[7] Schafer L, Schirra M .Influence of Delta Ferrite and Dendritic Carbides on the Impact and Tensile Properties of a Martensitic Chromium Steel[J]. Journal of Nuclear Materials, 1998, 258-263, Part2, (10):1336[J].Journal of Nuclear Materials, 1998, 258-263, Part2(10):1336-1339
[8] 陈德和.不锈钢的性能与组织[M].北京:机械工业出版社,1977
[9] Andersson J-O, Thomas Helander, Lars Hdghmd et al.Thermo-Calc & DICTRA, computational tools for materials science[J].Calphad, 2002, 26(2):273-312
[10] Bernhard C Schaffernak, Horst H Cerjak.Design of improved heat resistant materials by use of computational thermodynamics[J].Calphad, 2001, 25(2):241-251
[11]Knezevic V, SauthoffG, Vick J, et al.MartensiticFerritic Super Heat-Resistant 650℃ Steels-Design and Testing of Model Alloys[J].ISIJ International, 2002, 42(12):1505-1514
[12]黄晓斌,罗通伟,何晓辉.汽轮机末级叶片用钢的研制[J].特钢技术, 2005, 10(3):51-57
[13]王 强.钢的δ铁素体含量的控制[J].四川冶金, 2001, 23(3):24-26
[14] Daikoku T, Haneda H, Iseda A, et al.High-strength high-Cr ferritic heat-resistant steel: U.S. Patent 4, 957, 701[P], 1990-9-18
[15]刘正东,程世长,包汉生等.钒含量对铁 素体耐热钢组织与性能的影响[J].特殊钢, 2006, 27(1):7-10
[16] 孙宝珍.合金钢手册[M].北京:冶金工业出版社,1984
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
哈尔滨市成果转化项(2013DB4AG009)
{{custom_fund}}